Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies

2017 ◽  
Vol 24 (22) ◽  
pp. 17976-17984 ◽  
Author(s):  
Chenchen Liu ◽  
Jiantao Sun ◽  
Yuewei Liu ◽  
Hui Liang ◽  
Minsheng Wang ◽  
...  
Author(s):  
Kai Zhao ◽  
Jing Li ◽  
Chaonan Du ◽  
Qiang Zhang ◽  
Yu Guo ◽  
...  

AbstractAmbient fine particulate matter of 2.5 μm or less in diameter (PM2.5) of environment contamination is deemed as a risk factor of cerebrovascular diseases. Yet there is still no explicit evidence strongly supporting that PM2.5 with per unit increment can increase the risk of hemorrhagic stroke (HS). Literatures were searched from PubMed, Cochrane, and Embase. After the systemic review of relevant studies, random effects model was used to perform meta-analysis and to evaluate the association between PM2.5 and risk of HS. Seven cohort studies were finally included, involving more than 6 million people and 37,667 endpoint events (incidence or mortality of HS). Total scores of quality assessment were 50. Pooled hazard ratio (HR) for crude HRs was 1.13 (95%CI: 1.09–1.17) (CI for confidence interval). Pooled HR of subgroup analysis for current smoking with exposure to growing PM2.5 was 1.14 (95%CI: 0.92–2.15) and for never and former smoking was 1.04 (95%CI: 0.74–1.46). Ambient PM2.5 level is significantly associated with the risk of HS, which might be a potential risk factor of HS. Smoking does not further increase the risk of HS under exposure of PM2.5.


Author(s):  
Youngrin Kwag ◽  
Min-ho Kim ◽  
Shinhee Ye ◽  
Jongmin Oh ◽  
Gyeyoon Yim ◽  
...  

Background: Preterm birth contributes to the morbidity and mortality of newborns and infants. Recent studies have shown that maternal exposure to particulate matter and extreme temperatures results in immune dysfunction, which can induce preterm birth. This study aimed to evaluate the association between fine particulate matter (PM2.5) exposure, temperature, and preterm birth in Seoul, Republic of Korea. Methods: We used 2010–2016 birth data from Seoul, obtained from the Korea National Statistical Office Microdata. PM2.5 concentration data from Seoul were generated through the Community Multiscale Air Quality (CMAQ) model. Seoul temperature data were collected from the Korea Meteorological Administration (KMA). The exposure period of PM2.5 and temperature were divided into the first (TR1), second (TR2), and third (TR3) trimesters of pregnancy. The mean PM2.5 concentration was used in units of ×10 µg/m3 and the mean temperature was divided into four categories based on quartiles. Logistic regression analyses were performed to evaluate the association between PM2.5 exposure and preterm birth, as well as the combined effects of PM2.5 exposure and temperature on preterm birth. Result: In a model that includes three trimesters of PM2.5 and temperature data as exposures, which assumes an interaction between PM2.5 and temperature in each trimester, the risk of preterm birth was positively associated with TR1 PM2.5 exposure among pregnant women exposed to relatively low mean temperatures (<3.4 °C) during TR1 (OR 1.134, 95% CI 1.061–1.213, p < 0.001). Conclusions: When we assumed the interaction between PM2.5 exposure and temperature exposure, PM2.5 exposure during TR1 increased the risk of preterm birth among pregnant women exposed to low temperatures during TR1. Pregnant women should be aware of the risk associated with combined exposure to particulate matter and low temperatures during TR1 to prevent preterm birth.


2019 ◽  
Vol 247 ◽  
pp. 874-882 ◽  
Author(s):  
Yang Yang ◽  
Zengliang Ruan ◽  
Xiaojie Wang ◽  
Yin Yang ◽  
Tonya G. Mason ◽  
...  

2016 ◽  
Vol 124 (8) ◽  
pp. 1283-1290 ◽  
Author(s):  
Sarah Johnson ◽  
Jennifer F. Bobb ◽  
Kazuhiko Ito ◽  
David A. Savitz ◽  
Beth Elston ◽  
...  

2022 ◽  
Vol 160 ◽  
pp. 107053
Author(s):  
Jovine Bachwenkizi ◽  
Cong Liu ◽  
Xia Meng ◽  
Lina Zhang ◽  
Weidong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document