Hermitian geometry on the resolvent set (II)

Author(s):  
Ronald G. Douglas ◽  
Rongwei Yang
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jennifer Bravo ◽  
Carlos Lizama

AbstractWe show that if A is a closed linear operator defined in a Banach space X and there exist $t_{0} \geq 0$ t 0 ≥ 0 and $M>0$ M > 0 such that $\{(im)^{\alpha }\}_{|m|> t_{0}} \subset \rho (A)$ { ( i m ) α } | m | > t 0 ⊂ ρ ( A ) , the resolvent set of A, and $$ \bigl\Vert (im)^{\alpha }\bigl(A+(im)^{\alpha }I \bigr)^{-1} \bigr\Vert \leq M \quad \text{ for all } \vert m \vert > t_{0}, m \in \mathbb{Z}, $$ ∥ ( i m ) α ( A + ( i m ) α I ) − 1 ∥ ≤ M  for all  | m | > t 0 , m ∈ Z , then, for each $\frac{1}{p}<\alpha \leq \frac{2}{p}$ 1 p < α ≤ 2 p and $1< p < 2$ 1 < p < 2 , the abstract Cauchy problem with periodic boundary conditions $$ \textstyle\begin{cases} _{GL}D^{\alpha }_{t} u(t) + Au(t) = f(t), & t \in (0,2\pi ); \\ u(0)=u(2\pi ), \end{cases} $$ { D t α G L u ( t ) + A u ( t ) = f ( t ) , t ∈ ( 0 , 2 π ) ; u ( 0 ) = u ( 2 π ) , where $_{GL}D^{\alpha }$ D α G L denotes the Grünwald–Letnikov derivative, admits a normal 2π-periodic solution for each $f\in L^{p}_{2\pi }(\mathbb{R}, X)$ f ∈ L 2 π p ( R , X ) that satisfies appropriate conditions. In particular, this happens if A is a sectorial operator with spectral angle $\phi _{A} \in (0, \alpha \pi /2)$ ϕ A ∈ ( 0 , α π / 2 ) and $\int _{0}^{2\pi } f(t)\,dt \in \operatorname{Ran}(A)$ ∫ 0 2 π f ( t ) d t ∈ Ran ( A ) .


2000 ◽  
Vol 43 (3) ◽  
pp. 511-528 ◽  
Author(s):  
Jörg Eschmeier

AbstractLet T and S be quasisimilar operators on a Banach space X. A well-known result of Herrero shows that each component of the essential spectrum of T meets the essential spectrum of S. Herrero used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's results based on the observation that on the essential resolvent set of T the section spaces of the sheavesare complete nuclear spaces that are topologically dual to each other. Other concrete applications of this result are given.


Author(s):  
Wilhelm Stoll
Keyword(s):  

2012 ◽  
Vol 09 (07) ◽  
pp. 1250057 ◽  
Author(s):  
DOBRINKA GRIBACHEVA

A Riemannian manifold M with an integrable almost product structure P is called a Riemannian product manifold. Our investigations are on the manifolds (M, P, g) of the largest class of Riemannian product manifolds, which is closed with respect to the group of conformal transformations of the metric g. This class is an analogue of the class of locally conformal Kähler manifolds in almost Hermitian geometry. In the present paper we study a natural connection D on (M, P, g) (i.e. DP = Dg = 0). We find necessary and sufficient conditions, the curvature tensor of D to have properties similar to the Kähler tensor in Hermitian geometry. We pay attention to the case when D has a parallel torsion. We establish that the Weyl tensors for the connection D and the Levi-Civita connection coincide as well as the invariance of the curvature tensor of D with respect to the usual conformal transformation. We consider the case when D is a flat connection. We construct an example of the considered manifold by a Lie group where D is a flat connection with non-parallel torsion.


2018 ◽  
Vol 67 (3) ◽  
pp. 1800093 ◽  
Author(s):  
Vincenzo E. Marotta ◽  
Richard J. Szabo
Keyword(s):  

1966 ◽  
Vol 15 (1) ◽  
pp. 11-18 ◽  
Author(s):  
T. T. West

Let X be an infinite dimensional normed linear space over the complex field Z. X will not be complete, in general, and its completion will be denoted by . If ℬ(X) is the algebra of all bounded linear operators in X then T ∈ ℬ(X) has a unique extension and . The resolvent set of T ∈ ℬ(X) is defined to beand the spectrum of T is the complement of ρ(T) in Z.


Sign in / Sign up

Export Citation Format

Share Document