Clone granular soils with mixed particle morphological characteristics by integrating spherical harmonics with Gaussian mixture model, expectation–maximization, and Dirichlet process

2020 ◽  
Vol 15 (10) ◽  
pp. 2779-2796
Author(s):  
Quan Sun ◽  
Junxing Zheng
Data in Brief ◽  
2019 ◽  
Vol 27 ◽  
pp. 104628 ◽  
Author(s):  
Ju Qiao ◽  
Xuezhu Cai ◽  
Qian Xiao ◽  
Zhengxi Chen ◽  
Praveen Kulkarni ◽  
...  

Author(s):  
Ichrak Khoulqi ◽  
Najlae Idrissi ◽  
Muhammad Sarfraz

Breast cancer is one of the significant issues in medical sciences today. Specifically, women are suffering most worldwide. Early diagnosis can result to control the growth of the tumor. However, there is a need of high precision of diagnosis for right treatment. This chapter contributes toward an achievement of a computer-aided diagnosis (CAD) system. It deals with mammographic images and enhances their quality. Then, the enhanced images are segmented for pectoral muscle (PM) in the Medio-Lateral-Oblique (MLO) view of the mammographic images. The segmentation approach uses the tool of Gaussian Mixture Model-Expectation Maximization (GMM-EM). A standard database of Mini-MIAS with 322 images has been utilized for the implementation and experimentation of the proposed technique. The metrics of structural similarity measure and DICE coefficient have been utilized to verify the quality of segmentation based on the ground truth. The proposed technique is quite robust and accurate, it supersedes various existing techniques when compared in the same context.


2021 ◽  
Vol 87 (9) ◽  
pp. 615-630
Author(s):  
Longjie Ye ◽  
Ka Zhang ◽  
Wen Xiao ◽  
Yehua Sheng ◽  
Dong Su ◽  
...  

This paper proposes a Gaussian mixture model of a ground filtering method based on hierarchical curvature constraints. Firstly, the thin plate spline function is iteratively applied to interpolate the reference surface. Secondly, gradually changing grid size and curvature threshold are used to construct hierarchical constraints. Finally, an adaptive height difference classifier based on the Gaussian mixture model is proposed. Using the latent variables obtained by the expectation-maximization algorithm, the posterior probability of each point is computed. As a result, ground and objects can be marked separately according to the calculated possibility. 15 data samples provided by the International Society for Photogrammetry and Remote Sensing are used to verify the proposed method, which is also compared with eight classical filtering algorithms. Experimental results demonstrate that the average total errors and average Cohen's kappa coefficient of the proposed method are 6.91% and 80.9%, respectively. In general, it has better performance in areas with terrain discontinuities and bridges.


2017 ◽  
Vol 23 (2) ◽  
pp. 269-278 ◽  
Author(s):  
Jennifer Zelenty ◽  
Andrew Dahl ◽  
Jonathan Hyde ◽  
George D. W. Smith ◽  
Michael P. Moody

AbstractAccurately identifying and extracting clusters from atom probe tomography (APT) reconstructions is extremely challenging, yet critical to many applications. Currently, the most prevalent approach to detect clusters is the maximum separation method, a heuristic that relies heavily upon parameters manually chosen by the user. In this work, a new clustering algorithm, Gaussian mixture model Expectation Maximization Algorithm (GEMA), was developed. GEMA utilizes a Gaussian mixture model to probabilistically distinguish clusters from random fluctuations in the matrix. This machine learning approach maximizes the data likelihood via expectation maximization: given atomic positions, the algorithm learns the position, size, and width of each cluster. A key advantage of GEMA is that atoms are probabilistically assigned to clusters, thus reflecting scientifically meaningful uncertainty regarding atoms located near precipitate/matrix interfaces. GEMA outperforms the maximum separation method in cluster detection accuracy when applied to several realistically simulated data sets. Lastly, GEMA was successfully applied to real APT data.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qi Sun ◽  
Liwen Jiang ◽  
Haitao Xu

A vehicle-commodity matching problem (VCMP) is presented for service providers to reduce the cost of the logistics system. The vehicle classification model is built as a Gaussian mixture model (GMM), and the expectation-maximization (EM) algorithm is designed to solve the parameter estimation of GMM. A nonlinear mixed-integer programming model is constructed to minimize the total cost of VCMP. The matching process between vehicle and commodity is realized by GMM-EM, as a preprocessing of the solution. The design of the vehicle-commodity matching platform for VCMP is designed to reduce and eliminate the information asymmetry between supply and demand so that the order allocation can work at the right time and the right place and use the optimal solution of vehicle-commodity matching. Furthermore, the numerical experiment of an e-commerce supply chain proves that a hybrid evolutionary algorithm (HEA) is superior to the traditional method, which provides a decision-making reference for e-commerce VCMP.


Sign in / Sign up

Export Citation Format

Share Document