The Effects of Adding Different Adhesive Layers with a Microstructure Fiber Sensor Based on Surface Plasmon Resonance: A Numerical Study

Plasmonics ◽  
2021 ◽  
Author(s):  
Araf Shafkat ◽  
Ahmed Nabih Zaki Rashed ◽  
Hazem M. El-Hageen ◽  
Aadel M. Alatwi
Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1728
Author(s):  
Joshua Fernandes ◽  
Sangmo Kang

The near-field enhancement and localized surface plasmon resonance (LSPR) on the core-shell noble metal nanostructure surfaces are widely studied for various biomedical applications. However, the study of the optical properties of new plasmonic non-spherical nanostructures is less explored. This numerical study quantifies the optical properties of spherical and non-spherical (prolate and oblate) dimer nanostructures by introducing finite element modelling in COMSOL Multiphysics. The surface plasmon resonance peaks of gold nanostructures should be understood and controlled for use in biological applications such as photothermal therapy and drug delivery. In this study, we find that non-spherical prolate and oblate gold dimers give excellent tunability in a wide range of biological windows. The electromagnetic field enhancement and surface plasmon resonance peak can be tuned by varying the aspect ratio of non-spherical nanostructures, the refractive index of the surrounding medium, shell thickness, and the distance of separation between nanostructures. The absorption spectra exhibit considerably greater dependency on the aspect ratio and refractive index than the shell thickness and separation distance. These results may be essential for applying the spherical and non-spherical nanostructures to various absorption-based applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Dae Hong Jeong ◽  
Ho-Young Lee ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

AbstractA simple optical fiber sensor based on localized surface plasmon resonance was constructed for direct and rapid measurement of thyroglobulin (Tg). Specific tests for Tg in patients that have undergone thyroidectomy are limited because of insufficient sensitivity, complicated procedures, and in some cases, a long time to yield a result. A sensitive, fast, and simple method is necessary to relieve the psychological and physical burden of the patient. Various concentrations of Tg were measured in a microfluidic channel using an optical fiber sensor with gold nanoparticles. The sensor chip has a detection limit of 93.11 fg/mL with no specificity for other antigens. The potential applicability of the Tg sensing system was evaluated using arbitrary samples containing specific concentrations of Tg. Finally, the sensor can be employed to detect Tg in the patient’s serum, with a good correlation when compared with the commercial kit.


Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 18701-18710 ◽  
Author(s):  
J. Ortega-Mendoza ◽  
Alfonso Padilla-Vivanco ◽  
Carina Toxqui-Quitl ◽  
Placido Zaca-Morán ◽  
David Villegas-Hernández ◽  
...  

Sensors ◽  
2013 ◽  
Vol 13 (7) ◽  
pp. 9513-9521 ◽  
Author(s):  
Yu-Chia Tsao ◽  
Woo-Hu Tsai ◽  
Wen-Ching Shih ◽  
Mu-Shiang Wu

Sign in / Sign up

Export Citation Format

Share Document