Finite-time stabilization of a general class of nonholonomic dynamic systems via terminal sliding mode

2015 ◽  
Vol 13 (6) ◽  
pp. 585-595 ◽  
Author(s):  
Yu-Qiang Wu ◽  
Cheng-Long Zhu ◽  
Zhong-Cai Zhang
Author(s):  
Ali Abooee ◽  
Masoud Moravej-Khorasani ◽  
Mohammad Haeri

It is aimed to obtain global finite time stabilization of a class of uncertain multi-input–multi-output (MIMO) nonlinear systems in the presence of bounded disturbances by applying nonsingular terminal sliding mode controllers. The considered nonlinear systems consist of double integrator subsystems which interact with each other. In the proposed methods, new terminal sliding surfaces are introduced along with design of proper control inputs. The terminal sliding surfaces are defined such that the global finite time stability of sliding mode dynamic is attained. The control inputs are designed to steer the states into sliding motion within finite time and retain them on the terminal sliding surfaces. The presented approaches guarantee the finite time convergence of states with low sensitivity to their initial values. The convergence rate could be adjusted by proper choice of existing arbitrary parameters in the suggested control schemes. Three numerical simulation examples including van de Pol system and two robotic manipulators are provided to confirm the applicability and effectiveness of the proposed control schemes.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


Automatica ◽  
2005 ◽  
Vol 41 (11) ◽  
pp. 1957-1964 ◽  
Author(s):  
Shuanghe Yu ◽  
Xinghuo Yu ◽  
Bijan Shirinzadeh ◽  
Zhihong Man

Sign in / Sign up

Export Citation Format

Share Document