Comparative Atmospheric Corrosion Behavior of a Mild Steel and an Interstitial Free Steel

2018 ◽  
Vol 27 (9) ◽  
pp. 4497-4506 ◽  
Author(s):  
Pratik Murkute ◽  
Ravi Kumar ◽  
S. Choudhary ◽  
H. S. Maharana ◽  
J. Ramkumar ◽  
...  
2020 ◽  
Vol 6 (12) ◽  
pp. 1250b8
Author(s):  
Hamed Eskandari ◽  
Mohsen Saboktakin Rizi ◽  
Arezoo Ghanbari ◽  
Babak Nasiri ◽  
Kamran Dehghani

2013 ◽  
Vol 70 ◽  
pp. 188-193 ◽  
Author(s):  
L.Q. Guo ◽  
X.M. Zhao ◽  
B.C. Wang ◽  
Y. Bai ◽  
B.Z. Xu ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 24
Author(s):  
Qiongyao He ◽  
Xiaojuan Jiang ◽  
Pengzhan Cai ◽  
Ling Zhang ◽  
Tao Sun ◽  
...  

Interstitial free steels with various grain sizes and textures were prepared by cold-rolling followed by an annealing process. The effect of grain size, crystallographic orientations and stored energy on corrosion behavior of interstitial free steel was investigated. It was found that the deformed microstructure and dislocation boundaries were consumed by recrystallizing grains during annealing. The average grain size increase ranging from 0.61 μm to 11 μm and the volume fraction of recrystallized grains was about 96% after annealing for 64 h; meanwhile, the γ fiber was the dominated recrystallized texture component. The stored energy gradually decreased due to the reduction in dislocation density by annealing. The potentiodynamic polarization and Nyquist plots show that the corrosion potential exhibits a more positive shift and depressed capacitive semicircle radius increase with rising annealing time. The 64 h annealed specimens had the biggest depressed semicircle in the Nyquist plots and the highest positive corrosion potential, which indicates the enhancement of corrosion resistance. Such an improvement of corrosion resistance is attributed to the increase in the volume fraction of the γ fiber and decrease in the stored energy.


2021 ◽  
Vol 227 (2) ◽  
pp. 137-152
Author(s):  
S. K. Chandra ◽  
R. Sarkar ◽  
Sukalpa Choudhury ◽  
Mrinmoy Jana ◽  
P. S. De ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Bin Sun ◽  
Lei Cheng ◽  
Chong-Yang Du ◽  
Jing-Ke Zhang ◽  
Yong-Quan He ◽  
...  

The atmospheric corrosion behavior of a hot-rolled strip with four types (I–IV) of oxide scale was investigated using the accelerated wet–dry cycle corrosion test. Corrosion resistance and porosity of oxide scale were studied by potentiometric polarization measurements. Characterization of samples after 80 cycles of the wet–dry corrosion test showed that scale comprised wüstite and magnetite had strongest corrosion resistance. Oxide scale composed of inner magnetite/iron (>70%) and an outer magnetite layer had the weakest corrosion resistance. The corrosion kinetics (weight gain) of each type of oxide scale followed an initial linear and then parabolic (at middle to late corrosion) relationship. This could be predicted by a simple kinetic model which showed good agreement with the experimental results. Analysis of the potentiometric polarization curves, obtained from oxide coated steel electrodes, revealed that the type I oxide scale had the highest porosity, and the corrosion mechanism resulted from the joint effects of electrochemical behavior and the porosity of the oxide scale. In the initial stage of corrosion, the corrosion product nucleated and an outer rust layer formed. As the thickness of outer rust layer increased, the corrosion product developed on the scale defects. An inner rust layer then formed in the localized pits as crack growth of the scale. This attacked the scale and expanded into the substrate during the later stage of corrosion. At this stage, the protective effect of the oxide scale was lost.


Sign in / Sign up

Export Citation Format

Share Document