Dietary n−3 PUFA alter colonocyte mitochondrial membrane composition and function

Lipids ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Robert S. Chapkin ◽  
Mee Young Hong ◽  
Yang-Yi Fan ◽  
Laurie A. Davidson ◽  
Lisa M. Sanders ◽  
...  
1996 ◽  
Vol 44 (12) ◽  
pp. 1363-1372 ◽  
Author(s):  
M Poot ◽  
Y Z Zhang ◽  
J A Krämer ◽  
K S Wells ◽  
L J Jones ◽  
...  

Investigation of mitochondrial morphology and function has been hampered because photostable, mitochondrion-specific stains that are retained in fixed, permeabilized cells have not been available. We found that in live cell preparations, the CMXRos and H2-CMXRos dyes were more photostable than rhodamine 123. In addition, fluorescence and morphology of mitochondria stained with the CMXRos and CMXRos-H2 dyes were preserved even after formaldehyde fixation and acetone permeabilization. Using epifluorescence microscopy, we showed that CMXRos and H2-CMXRos dye fluorescence fully co-localized with antibodies to subunit I of cytochrome c oxidase, indicating that the dyes specifically stain mitochondria. Confocal microscopy of these mitochondria yielded colored banding patterns, suggesting that these dyes and the mitochondrial enzyme localize to different suborganellar regions. Therefore, these stains provide powerful tools for detailed analysis of mitochondrial fine structure. We also used poisons that decrease mitochondrial membrane potential and an inhibitor of respiration complex II to show by flow cytometry that the fluorescence intensity of CMXRos and H2-CMXRos dye staining responds to changes in mitochondrial membrane potential and function. Hence, CMXRos has the potential to monitor changes in mitochondrial function. In addition, CMXRos staining was used in conjunction with spectrally distinct fluorescent probes for the cell nucleus and the microtubule network to concomitantly evaluate multiple features of cell morphology.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi36-vi36
Author(s):  
Takashi Shingu ◽  
Jian Hu

Abstract Despite transformative effects on the therapy of cancers such as melanoma and lung adenocarcinoma, blockade of the T cell immune checkpoints has generated limited impact on glioblastoma. Identifying genetic/genomic alterations that could potentially sensitize the patients to immunotherapy will significantly improve the efficacy of immunotherapy on glioblastoma patients. As part of our effort to identify novel glioma suppressors that affect the interaction of GSCs with their microenvironment, we discovered that the RNA-binding protein Quaking (QKI) is a key regulator of cellular endocytosis. QKI is mutated or deleted in ~34% of human glioblastomas. Supporting QKI’s tumor suppresser function, 92% of the Nestin-CreERT2;QkiL/L;PtenL/L;p53L/L mice developed glioblastoma with a median survival of 105 days, however, the Nestin-CreERT2;PtenL/L;p53L/L mice did not develop any glioma up to a year. Mechanistically, QKI regulates the RNA stability and alternative splicing of numerous protein and lipid components of endolysosomes, particularly the unsaturated fatty acids (UFAs). Functionally, deletion of Qki and inhibition of UFA biosynthesis both decrease endolysosome-mediated receptor degradation, thereby enriching receptors on the cytoplasmic membrane (e.g., Frizzled and Notch1) that are essential for maintaining stemness. This enrichment of receptor signaling enables GSCs to cope with the low ligand levels during their invasion. On the other hand, lower lysosomal activity induced by Qki deletion and UFA loss led to defective mitophagy. We also found that insufficient UFAs in mitochondrial membrane significantly compromised mitochondrial membrane integrity and function. These two mechanisms concomitantly led to accumulation of damaged mitochondria and higher levels of reactive oxygen species (ROS), and consequently genomic instability. Lastly, we found that the higher level of genomic instability induced by Qki loss rendered cells more sensitive to anti-CTLA4 and anti-PD1 antibodies. Taken together, our data suggest that Qki/UFA loss-induced endolysosomal and mitochondrial defects promote gliomagenesis yet render cells vulnerabilities that could be harnessed for therapeutic purposes.


2020 ◽  
Vol 8 (9) ◽  
pp. 1436
Author(s):  
Stephanie Serena Schäpe ◽  
Jannike Lea Krause ◽  
Rebecca Katharina Masanetz ◽  
Sarah Riesbeck ◽  
Robert Starke ◽  
...  

Bisphenol S (BPS) is an industrial chemical used in the process of polymerization of polycarbonate plastics and epoxy resins and thus can be found in various plastic products and thermal papers. The microbiota disrupting effect of BPS on the community structure of the microbiome has already been reported, but little is known on how BPS affects bacterial activity and function. To analyze these effects, we cultivated the simplified human intestinal microbiota (SIHUMIx) in bioreactors at a concentration of 45 µM BPS. By determining biomass, growth of SIHUMIx was followed but no differences during BPS exposure were observed. To validate if the membrane composition was affected, fatty acid methyl esters (FAMEs) profiles were compared. Changes in the individual membrane fatty acid composition could not been described; however, the saturation level of the membranes slightly increased during BPS exposure. By applying targeted metabolomics to quantify short-chain fatty acids (SCFA), it was shown that the activity of SIHUMIx was unaffected. Metaproteomics revealed temporal effect on the community structure and function, showing that BPS has minor effects on the structure or functionality of SIHUMIx.


2001 ◽  
Vol 280 (4) ◽  
pp. L779-L791 ◽  
Author(s):  
Shama Ahmad ◽  
Carl W. White ◽  
Ling-Yi Chang ◽  
Barbara K. Schneider ◽  
Corrie B. Allen

Glutamine is an important mitochondrial substrate implicated in the protection of cells from oxidant injury, but the mechanisms of its action are incompletely understood. Human pulmonary epithelial-like (A549) cells were exposed to 95% O2 for 4 days in the absence and presence of glutamine. Cell proliferation in normoxia was dependent on glutamine, and glutamine deprivation markedly accelerated cell death in hyperoxia. Glutamine significantly increased cellular ATP levels in normoxia and prevented the loss of ATP in hyperoxia seen in glutamine-deprived cells. Mitochondrial membrane potential as assessed by flow cytometry with chloromethyltetramethylrosamine was increased by glutamine in hyperoxia-exposed A549 cells, and a glutamine dose-dependent increase in mitochondrial membrane potential was detected. Glutamine-supplemented, hyperoxia-exposed cells had a higher O2 consumption rate and GSH content. Electron and fluorescence microscopy revealed that, in hyperoxia, glutamine protected cellular structures, especially mitochondria, from damage. In hyperoxia, activity of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase was partially protected by its indirect substrate, glutamine, indicating a mechanism of mitochondrial protection.


Author(s):  
Thomas R. Shaw ◽  
Subhadip Ghosh ◽  
Sarah L. Veatch

Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid–liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 20, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document