Characterization of olive oil classes using a Chemsensor and pattern recognition techniques

2002 ◽  
Vol 79 (11) ◽  
pp. 1103-1108 ◽  
Author(s):  
F. Peña ◽  
S. Cárdenas ◽  
M. Gallego ◽  
M. Valcárcel
2011 ◽  
Vol 25 ◽  
pp. 1137-1140 ◽  
Author(s):  
Z. Haddi ◽  
A. Amari ◽  
A. Ould. Ali ◽  
N. El Bari ◽  
H. Barhoumi ◽  
...  

The Analyst ◽  
2001 ◽  
Vol 126 (1) ◽  
pp. 97-103 ◽  
Author(s):  
P. M. Padín ◽  
R. M. Peña ◽  
S. García ◽  
C. Herrero ◽  
R. Iglesias ◽  
...  

1992 ◽  
Vol 25 (3) ◽  
pp. 147
Author(s):  
J.W. Ekis ◽  
M.S. Obaidat ◽  
S.A. Bleha

Author(s):  
D. RODRIGUEZ ◽  
A. BOSELLI ◽  
A. LAMAGNA ◽  
I. ELMI ◽  
S. ZAMPOLLI ◽  
...  

2012 ◽  
Vol 64 (4) ◽  
pp. 688-698 ◽  
Author(s):  
Nabeel M. Gazzaz ◽  
Mohd Kamil Yusoff ◽  
Mohammad Firuz Ramli ◽  
Ahmad Zaharin Aris ◽  
Hafizan Juahir

1998 ◽  
Vol 6 (A) ◽  
pp. A285-A290 ◽  
Author(s):  
Gabriela Blagoi ◽  
Anca Bleotu ◽  
Madalina Puica ◽  
Mihaela Vasilescu ◽  
Mihaela Ilie

Lipid extracts that exhibit similar near infrared spectra due to their chemical composition were investigated to generate their fingerprint by using pattern recognition techniques. Sunflower, buckthorn, wheatgerm, chrysalis, and olive oils were checked for qualitative and quantitative composition by GC-MS techniques and then analysed by using an NIRSystems Pharma device. Good results were obtained for wheatgerm, chrysalis and buckthorn oil (the “quality areas” do not overlay), but contradictory results were obtained for sunflower and olive oil.


Sign in / Sign up

Export Citation Format

Share Document