Overexpression of the DOF-Type Transcription Factor Enhances Lipid Synthesis in Chlorella vulgaris

2019 ◽  
Vol 189 (1) ◽  
pp. 116-128 ◽  
Author(s):  
Saki Tokunaga ◽  
Shohei Sanda ◽  
Yusuke Uraguchi ◽  
Satoshi Nakagawa ◽  
Shigeki Sawayama
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Rozita Madadi ◽  
Mohammad Ali Zahed ◽  
Ahmad Ali Pourbabaee ◽  
Meisam Tabatabaei ◽  
Mohammad Reza Naghavi

AbstractA novel strategy of using microalgae Chlorella vulgaris for simultaneous bio-treatment of petrochemical wastewater and lipid production was developed in the present study. Phycoremediation was carried out in 30 days. The profile of fatty acids was identified, and the specifications of biodiesel including saponification value, iodine value, cetane number, long-chain saturated factor, cold filter plugging point, cloud point, allylic position equivalent and bis-allylic position equivalent were predicted by BiodieselAnalyzer® software. Besides, polycyclic aromatic hydrocarbons were determined in both wastewater samples and produced lipid. The observed data showed that biodiesel from C. vulgaris was superior to petrodiesel in terms of suitability in diesel engines. Moreover, contamination of petrochemical wastewater can influence the expression of a variety of genes in algae. To investigate the effectiveness of contamination on the expression of lipid synthesis as well as three photosynthesis genes, a real-time polymerase chain reaction assay was used to quantify transcript levels of PsaB (photosystem I reaction center protein subunit B), psbC (an integral membrane protein component of photosystem II), and rbcL (a large subunit of ribulose-1,5-bisphosphate carboxylase oxygenase). Furthermore, the gene expression level of accD (acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic) was studied to discover the effect of wastewater on lipid production. The results showed that when diluted petrochemical wastewater (50%) was used as a media for C. vulgaris cultivation, these genes expression significantly increased. For 50% diluted wastewater, the maximum removal of BOD, COD, total nitrogen, and total phosphor has been 30.36%, 10.89%, 69.89%, and 92.59%, respectively.


2002 ◽  
Vol 22 (24) ◽  
pp. 8478-8490 ◽  
Author(s):  
Hang Wang ◽  
Feng Liu ◽  
Clarke F. Millette ◽  
Daniel L. Kilpatrick

ABSTRACT Cholesterol biosynthesis in somatic cells is controlled at the transcriptional level by a homeostatic feedback pathway involving sterol regulatory element binding proteins (SREBPs). These basic helix-loop-helix (bHLH)-Zip proteins are synthesized as membrane-bound precursors, which are cleaved to form a soluble, transcriptionally active mature SREBP that regulates the promoters for genes involved in lipid synthesis. Homeostasis is conferred by sterol feedback inhibition of this maturation process. Previous work has demonstrated the expression of SREBP target genes in the male germ line, several of which are highly up-regulated during specific developmental stages. However, the role of SREBPs in the control of sterol regulatory element-containing promoters during spermatogenesis has been unclear. In particular, expression of several of these genes in male germ cells appears to be insensitive to sterols, contrary to SREBP-dependent gene regulation in somatic cells. Here, we have characterized a novel isoform of the transcription factor SREBP2, which is highly enriched in rat and mouse spermatogenic cells. This protein, SREBP2gc, is expressed in a stage-dependent fashion as a soluble, constitutively active transcription factor that is not subject to feedback control by sterols. These findings likely explain the apparent sterol-insensitive expression of lipid synthesis genes during spermatogenesis. Expression of a sterol-independent, constitutively active SREBP2gc in the male germ line may have arisen as a means to regulate SREBP target genes in specific developmental stages. This may reflect unique roles for cholesterol synthesis and other functional targets of SREBPs during spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document