Preparation of natural dyes from salvia and spathodea for TiO2-based dye-sensitized solar cells (DSSCs) and their electrochemical impedance spectroscopic study under light and dark conditions

2020 ◽  
Vol 43 (1) ◽  
Author(s):  
G M Lohar ◽  
D V Rupnawar ◽  
R V Shejawal ◽  
A V FULARI
Nanoscale ◽  
2016 ◽  
Vol 8 (41) ◽  
pp. 17963-17975 ◽  
Author(s):  
Oliver Langmar ◽  
Carolina R. Ganivet ◽  
Gema de la Torre ◽  
Tomás Torres ◽  
Rubén D. Costa ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1547
Author(s):  
Mariia Becker ◽  
Maria-Sophie Bertrams ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

Dye-sensitized solar cell (DSC) technology has been broadly investigated over the past few decades. The sandwich-type structure of the DSC makes the manufacturing undemanding under laboratory conditions but results in the need for reproducible measurements for acceptable DSC characterization. Electrochemical impedance spectroscopy (EIS) offers the possibility to study complex electronic systems and is commonly used for solar cells. There is a tendency in the literature to present impedance data only for one representative device. At the same time, as current density–voltage plots illustrate, measurements can vary within one set of DSCs with identical components. We present multiple DSC impedance measurements on “identical” devices prepared using two different dyes and present a statistical analysis regarding the reproducibility.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmed M. Ammar ◽  
Hemdan S. H. Mohamed ◽  
Moataz M. K. Yousef ◽  
Ghada M. Abdel-Hafez ◽  
Ahmed S. Hassanien ◽  
...  

Here, three natural dyes were extracted from different fruits and leaves and used as sensitizers for dye-sensitized solar cells (DSSCs). Chlorophyll was extracted from spinach leaves using acetone as a solvent. Anthocyanin was extracted from red cabbage and onion peels using water. Different characterizations for the prepared natural dyes were conducted including UV-vis absorption, FTIR, and steady-state/time-resolved photoluminescence spectroscopy. Various DSSCs based on the extracted dyes were fabricated. The degradation in the power conversion efficiencies was monitored over a week. The effect of the TiO2 mesoporous layers on the efficiency was also studied. The interfaces between the natural dyes and the TiO2 layers were investigated using electrochemical impedance spectroscopy.


Optik ◽  
2021 ◽  
pp. 167331
Author(s):  
Shalini Singh ◽  
Ishwar Chandra Maurya ◽  
Shubham Sharma ◽  
Shiva Prakash Singh Kushwaha ◽  
Pankaj Srivastava ◽  
...  

2021 ◽  
Author(s):  
Indriana Kartini ◽  
Adhi Dwi Hatmanto

This article will discuss natural dyes’ role, from colouring the cotton fabrics with some functionality to harvesting sunlight in the dye-sensitized solar cells. Natural dye colourants are identical to the low light- and wash-fastness. Therefore, an approach to improving the colourant’s physical properties is necessary. Colouring steps employing silica nanosol and chitosan will be presented. The first part will be these multifunctional natural dye coatings on cotton fabrics. Then, functionality such as hydrophobic surfaces natural dyed cotton fabrics will be discussed. Natural dyes are also potential for electronic application, such as solar cells. So, the second part will present natural dyes as the photosensitizers for solar cells. The dyes are adsorbed on a semiconductor oxide surface, such as TiO2 as the photoanode. Electrochemical study to explore natural dyes’ potential as sensitizer will be discussed, for example, natural dyes for Batik. Ideas in improving solar cell efficiency will be discussed by altering the photoanode’s morphology. The ideas to couple the natural dyes with an organic–inorganic hybrid of perovskite and carbon dots are then envisaged.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Braden Bills ◽  
Mariyappan Shanmugam ◽  
Mahdi Farrokh Baroughi ◽  
David Galipeau

AbstractThe performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the porous titanium oxide (TiO2) nanoparticles back into the electrolyte solution, which occurs almost exclusively through the interface. This and the fact that DSSCs have a very large interfacial area makes their performance greatly dependant on the density and activity of TiO2 surface states. Thus, effectively engineering the TiO2/dye/electrolyte interface to reduce carrier losses is critically important for improving the photovoltaic performance of the solar cell. Atomic layer deposition (ALD), which uses high purity gas precursors that can rapidly diffuse through the porous network, was used to grow a conformal and controllable aluminum oxide (Al2O3) and hafnium oxide (HfO2) ultra thin layer on the TiO2 surface. The effects of this interfacial treatment on the DSSC performance was studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy (EIS) measurements.


Sign in / Sign up

Export Citation Format

Share Document