scholarly journals Dynamic Regulation of JAK-STAT Signaling Through the Prolactin Receptor Predicted by Computational Modeling

Author(s):  
Ryland D. Mortlock ◽  
Senta K. Georgia ◽  
Stacey D. Finley

Abstract Introduction The expansion of insulin-producing beta cells during pregnancy is critical to maintain glucose homeostasis in the face of increasing insulin resistance. Prolactin receptor (PRLR) signaling is one of the primary mediators of beta cell expansion during pregnancy, and loss of PRLR signaling results in reduced beta cell mass and gestational diabetes. Harnessing the proliferative potential of prolactin signaling to expand beta cell mass outside of the context of pregnancy requires quantitative understanding of the signaling at the molecular level. Methods A mechanistic computational model was constructed to describe prolactin-mediated JAK-STAT signaling in pancreatic beta cells. The effect of different regulatory modules was explored through ensemble modeling. A Bayesian approach for likelihood estimation was used to fit the model to experimental data from the literature. Results Including receptor upregulation, with either inhibition by SOCS proteins, receptor internalization, or both, allowed the model to match experimental results for INS-1 cells treated with prolactin. The model predicts that faster dimerization and nuclear import rates of STAT5B compared to STAT5A can explain the higher STAT5B nuclear translocation. The model was used to predict the dose response of STAT5B translocation in rat primary beta cells treated with prolactin and reveal possible strategies to modulate STAT5 signaling. Conclusions JAK-STAT signaling must be tightly controlled to obtain the biphasic response in STAT5 activation seen experimentally. Receptor up-regulation, combined with SOCS inhibition, receptor internalization, or both is required to match experimental data. Modulating reactions upstream in the signaling can enhance STAT5 activation to increase beta cell survival.

2020 ◽  
Author(s):  
Ryland D. Mortlock ◽  
Senta K. Georgia ◽  
Stacey D. Finley

ABSTRACTIntroductionHormones signal through various receptors and cascades of biochemical reactions to expand beta cell mass during pregnancy. Harnessing this phenomenon to treat beta cell dysfunction requires quantitative understanding of the signaling at the molecular level. This study explores how different regulatory elements impact JAK-STAT signaling through the prolactin receptor in pancreatic beta cells.MethodsA mechanistic computational model was constructed to describe the key reactions and molecular species involved in JAK-STAT signaling in response to the hormone prolactin. The effect of including and excluding different regulatory modules in the model structure was explored through ensemble modeling. A Bayesian approach for likelihood estimation was used to parametrize the model to experimental data from the literature.ResultsReceptor upregulation, combined with either inhibition by SOCS proteins, receptor internalization, or both, was required to obtain STAT5 dynamics matching experimental results for INS-1 cells treated with prolactin. Multiple model structures could fit the experimental data, and key findings were conserved across model structures, including faster dimerization and nuclear import rates of STAT5B compared to STAT5A. The model was validated using experimental data from rat primary beta cells not used in parameter estimation. Probing the fitted, validated model revealed possible strategies to modulate STAT5 signaling.ConclusionsJAK-STAT signaling must be tightly controlled to obtain the biphasic response in STAT5 activation seen experimentally. Receptor up-regulation, combined with SOCS inhibition, receptor internalization, or both is required to match experimental data. Modulating reactions upstream in the signaling can enhance STAT5 activation to increase beta cell mass.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Elisa Fernández-Millán ◽  
Carlos Guillén

Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
François Mach ◽  
Franco Dallegri ◽  
Giorgio Luciano Viviani ◽  
...  

The primary function of pancreatic beta-cells is to produce and release insulin in response to increment in extracellular glucose concentrations, thus maintaining glucose homeostasis. Deficient beta-cell function can have profound metabolic consequences, leading to the development of hyperglycemia and, ultimately, diabetes mellitus. Therefore, strategies targeting the maintenance of the normal function and protecting pancreatic beta-cells from injury or death might be crucial in the treatment of diabetes. This narrative review will update evidence from the recently identified molecular regulators preserving beta-cell mass and function recovery in order to suggest potential therapeutic targets against diabetes. This review will also highlight the relevance for novel molecular pathways potentially improving beta-cell dysfunction.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebeca Fernandez-Ruiz ◽  
Ainhoa García-Alamán ◽  
Yaiza Esteban ◽  
Joan Mir-Coll ◽  
Berta Serra-Navarro ◽  
...  

AbstractExpanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass.


2019 ◽  
Vol 11 (9) ◽  
pp. 747-760 ◽  
Author(s):  
Yunxia Zhu ◽  
Yi Sun ◽  
Yuncai Zhou ◽  
Yan Zhang ◽  
Tao Zhang ◽  
...  

AbstractCurrent research indicates that beta cell loss in type 2 diabetes may be attributed to beta cell dedifferentiation rather than apoptosis; however, the mechanisms by which this occurs remain poorly understood. Our previous study demonstrated that elevation of microRNA-24 (miR-24) in a diabetic setting caused beta cell dysfunction and replicative deficiency. In this study, we focused on the role of miR-24 in beta cell apoptosis and dedifferentiation under endoplasmic reticulum (ER) stress conditions. We found that miR-24 overabundance protected beta cells from thapsigargin-induced apoptosis at the cost of accelerating the impairment of glucose-stimulated insulin secretion (GSIS) and enhancing the presence of dedifferentiation markers. Ingenuity® Pathway Analysis (IPA) revealed that elevation of miR-24 had an inhibitory effect on XBP1 and ATF4, which are downstream effectors of two key branches of ER stress, by inhibiting its direct target, Ire1α. Notably, elevated miR-24 initiated another pathway that targeted Mafa and decreased GSIS function in surviving beta cells, thus guiding their dedifferentiation under ER stress conditions. Our results demonstrated that the elevated miR-24, to the utmost extent, preserves beta cell mass by inhibiting apoptosis and inducing dedifferentiation. This study not only provides a novel mechanism by which miR-24 dominates beta cell turnover under persistent metabolic stress but also offers a therapeutic consideration for treating diabetes by inducing dedifferentiated beta cells to re-differentiation.


Diabetologia ◽  
2013 ◽  
Vol 57 (3) ◽  
pp. 542-553 ◽  
Author(s):  
Iseki Takamoto ◽  
Naoto Kubota ◽  
Keizo Nakaya ◽  
Katsuyoshi Kumagai ◽  
Shinji Hashimoto ◽  
...  

2020 ◽  
Author(s):  
Carolina Rosselot ◽  
Alexandra Alvarsson ◽  
Peng Wang ◽  
Yansui Li ◽  
Kunal Kumar ◽  
...  

AbstractSince all diabetes results from reductions in numbers of functional pancreatic beta cells, beta cell regenerative drugs are required for optimal and scalable future diabetes treatment. While many diabetes drugs are in clinical use, none increases human beta cell numbers. We have shown that a combination of the DYRK1A inhibitor, harmine, with the GLP1 receptor agonist, exendin-4, markedly increases human beta cell proliferation in vitro. However, technological limitations have prevented assessment of human beta cell mass in vivo. Here, we describe a novel method that combines iDISCO+ tissue clearing, insulin immunolabeling, light sheet microscopy, and volumetric quantification of human beta cells transplanted into immunodeficient mice. We demonstrate a striking seven-fold in vivo increase in human beta cell mass in response to three months of combined harmine-exendin-4 combination infusion, accompanied by lower blood glucose levels, increased plasma human insulin concentrations and enhanced beta cell proliferation. These studies unequivocally demonstrate for the first time that pharmacologic human beta cell expansion is a realistic and achievable path to diabetes therapy, and provide a rigorous, entirely novel and reproducible tool for quantifying human beta cell mass in vivo.


Author(s):  
Sevim Kahraman ◽  
Ozlem Yilmaz ◽  
Hasan Ali Altunbas ◽  
Ercument Dirice ◽  
Ahter Dilsad Sanlioglu

Strategies to increase functional pancreatic beta cell mass is of great interest in diabetes-related research. TNF-related apoptosis-inducing ligand (TRAIL) is well-known to promote proliferation and survival in various cell types, including vascular smooth muscle and endothelial cells. Correlation between the protective nature of TRAIL on these cells and its proliferative effect is noteworthy. TRAIL’s seemingly protective/therapeutic effect in diabetes prompted us to question whether it may act as an inducer of proliferation in pancreatic beta cells. We used rat primary islet cells and MIN6 mouse beta cell line to investigate TRAIL-induced proliferation. Cell viability and/or death was analysed by MTT, WST-1, and annexin-V/PI assays, while proliferation rates and pathways were assessed via immunocytochemical and Western blot analyses. Receptor neutralization antibodies identified the mediator receptors. Recombinant soluble TRAIL (sTRAIL) treatment led to 1.6-fold increased proliferation in insulin-positive cells in dispersed rat islets compared to the untreated group, while adenovirus-mediated overexpression of TRAIL increased the number of proliferating beta cells up to more than 6-fold. sTRAIL or adenoviral vector-mediated TRAIL overexpression induced proliferation in MIN6 cells also. TRAIL’s proliferative effect was mediated via AKT activation, which was suppressed upon specific inhibition. Neutralization of each TRAIL receptor reversed the proliferative effect to some degree, with the highest level of inhibition in death receptor 5 (DR5) blockage in MIN6 cells, and in decoy receptor 1 (DcR1) blockage in primary rat beta cells. Thus, TRAIL induces proliferation in rodent pancreatic beta cells through activation of the AKT pathway.


Sign in / Sign up

Export Citation Format

Share Document