scholarly journals Uniqueness of Curvature Measures in Pseudo-Riemannian Geometry

Author(s):  
Andreas Bernig ◽  
Dmitry Faifman ◽  
Gil Solanes

AbstractThe recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.

2003 ◽  
Vol 96 (2) ◽  
pp. 149-166 ◽  
Author(s):  
Ryszard Deszcz ◽  
Małgorzata Głogowska ◽  
Marian Hotloś ◽  
Leopold Verstraelen

2003 ◽  
Vol 2003 (27) ◽  
pp. 1731-1738 ◽  
Author(s):  
Dragoş Cioroboiu

Chen (1993) established a sharp inequality for the sectional curvature of a submanifold in Riemannian space forms in terms of the scalar curvature and squared mean curvature. The notion of a semislant submanifold of a Sasakian manifold was introduced by J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez (1999). In the present paper, we establish Chen inequalities for semislant submanifolds in Sasakian space forms by using subspaces orthogonal to the Reeb vector fieldξ.


Sign in / Sign up

Export Citation Format

Share Document