scholarly journals Geodesic Random Walks, Diffusion Processes and Brownian Motion on Finsler Manifolds

Author(s):  
Tianyu Ma ◽  
Vladimir S. Matveev ◽  
Ilya Pavlyukevich

AbstractWe show that geodesic random walks on a complete Finsler manifold of bounded geometry converge to a diffusion process which is, up to a drift, the Brownian motion corresponding to a Riemannian metric.

Author(s):  
ILYA V. TELYATNIKOV

We consider surface measures on the set of trajectories in a smooth compact Riemannian submanifold of Euclidean space generated by diffusion processes in the ambient space. A construction of surface measures on the path space of a smooth compact Riemannian submanifold of Euclidean space was introduced by Smolyanov and Weizsäcker for the case of the standard Brownian motion. The result presented in this paper extends the result of Smolyanov and Weizsäcker to the case when we consider measures generated by diffusion processes in the ambient space with nonidentical correlation operators. For every partition of the time interval, we consider the marginal distribution of the diffusion process in the ambient space under the condition that it visits the manifold at all times of the partition, when the mesh of the partition tends to zero. We prove the existence of some limit surface measures and the equivalence of the above measures to the distribution of some diffusion process on the manifold.


2000 ◽  
Vol 32 (01) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


2017 ◽  
Vol 32 (1) ◽  
pp. 330-352
Author(s):  
Endre Csáki ◽  
Miklós Csörgő ◽  
Antónia Földes ◽  
Pál Révész

Sign in / Sign up

Export Citation Format

Share Document