Tannic Acid-chitosan Strengthened Cellulose Filter Paper for Water Disinfection via Formation of Silver Nanoparticles

Author(s):  
Prena Chaudhary ◽  
Kummara Madhusudana Rao ◽  
Soon Mo Choi ◽  
Sunmi Zo ◽  
Maduru Suneetha ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 4873-4882
Author(s):  
Gongyan Liu ◽  
Ruiquan Yu ◽  
Jing Jiang ◽  
Zhuang Ding ◽  
Jing Ma ◽  
...  

Point-of-use water disinfection by GA@AgNPs-LA-FP.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 595
Author(s):  
Hsiu-Wen Chien ◽  
Ming-Yen Tsai ◽  
Chia-Jung Kuo ◽  
Ching-Lo Lin

In this study, a polydopamine (PDA) and polyethyleneimine (PEI)-assisted approach was developed to generate well-distributed PDA/PEI/silver (PDA/PEI/Ag) nanocomplexes on the surfaces of commercial cellulose filter papers to achieve substantial bacterial reduction under gravity-driven filtration. PDA can bind to cellulose paper and act as a reducer to produce silver nanoparticles (AgNPs), while PEI can react with oxidative dopamine and act as a dispersant to avoid the aggregation of AgNPs. The successful immobilization of PDA/PEI/Ag nanocomplexes was confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used as pathogen models to test the efficacy of the PDA/PEI/Ag nanocomplex-incorporated filter papers. The PDA/PEI/Ag nanocomplex-incorporated filter papers provided a substantial bacterial removal of up to 99% by simple gravity filtration. This work may be useful to develop a feasible industrial production process for the integration of biocidal AgNPs into cellulose filter paper and is recommended as a local-condition water-treatment technology to treat microbial-contaminated drinking water.


2020 ◽  
Vol 231 ◽  
pp. 115746 ◽  
Author(s):  
Zahid Hanif ◽  
Zeeshan Ahmad Khan ◽  
Mohd Farhan Siddiqui ◽  
Muhammad Zakria Tariq ◽  
Seungkyung Park ◽  
...  

2019 ◽  
Vol 30 (8) ◽  
pp. 7367-7383 ◽  
Author(s):  
Muhammad Ismail ◽  
M. I. Khan ◽  
Kalsoom Akhtar ◽  
Jongchul Seo ◽  
Murad Ali Khan ◽  
...  

Cellulose ◽  
2016 ◽  
Vol 23 (6) ◽  
pp. 3577-3588 ◽  
Author(s):  
Ikram Ahmad ◽  
Tahseen Kamal ◽  
Sher Bahadar Khan ◽  
Abdullah M. Asiri

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


2020 ◽  
Vol 157 ◽  
pp. 104776
Author(s):  
Wenqi Song ◽  
Miaoxiu Yang ◽  
Yuzhen Zhao ◽  
Min Zhu ◽  
Yanfang Zhu ◽  
...  

2016 ◽  
Vol 39 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Tae Yoon Kim ◽  
Song-Hyun Cha ◽  
Seonho Cho ◽  
Youmie Park

NANO ◽  
2021 ◽  
pp. 2150088
Author(s):  
Kalthoum Chourabi ◽  
Lobna Elleuch ◽  
Salma Kloula ◽  
Ahmed Landoulsi ◽  
Abdelwaheb Chatti

Silver nanoparticles have attracted much interest from scientists to develop nanosilver-based disinfectant products due to their unique properties of high antimicrobial activity. This study focused on biosynthesis, characterization, antimicrobial and antibiofilm effects of silver nanoparticles against vegetative and starved Shigella strains. The silver nanoparticles were synthesized using the yeast Yarrowia lipolytica and characterized by ultraviolet–visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The antimicrobial and antibiofilm activities of silver nanoparticles were tested against the growth of vegetative and starved Shigella strains. After the addition of silver nitrate solution to the supernatant of Y. lipolytica, we noticed the appearance of a brown-black coloration that suggested the formation of silver nanoparticles. The presence of silver nanoparticles was manifested by a maximum absorption in the ultraviolet–visible range, precisely at the wavelength 420[Formula: see text]nm. The crystalline nature and the stability of silver nanoparticles were confirmed, respectively, by XRD and FTIR analysis. The antibacterial activity of silver nanoparticles showed significant toxicity on Shigella strains indicating that the starved cells were more sensitive to treatment with silver nanoparticles than vegetative cells. Surprisingly, the biofilm formation had not been inhibited by silver nanoparticles for both vegetative and starved cells. In conclusion, a new class of nanosilver containing disinfectant nanoproducts will be promising for advanced environmental treatments including air disinfection, water disinfection, surface disinfection and personal hygiene that will help to prevent the further outbreak of diseases.


Sign in / Sign up

Export Citation Format

Share Document