Alumina-doped alginate gel as a cell carrier for ethanol production in a packed-bed bioreactor

2011 ◽  
Vol 16 (3) ◽  
pp. 505-512 ◽  
Author(s):  
Jirawan Mongkolkajit ◽  
Jiranan Pullsirisombat ◽  
Savitree Limtong ◽  
Muenduen Phisalaphong
2017 ◽  
Vol 102 ◽  
pp. 9-14 ◽  
Author(s):  
Nicholas I. Canabarro ◽  
Cláudia Alessio ◽  
Edson L. Foletto ◽  
Raquel C. Kuhn ◽  
Wagner L. Priamo ◽  
...  

2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


Author(s):  
Sasan Zarei ◽  
Seyyed Mohammad Mousavi ◽  
Teimour Amani ◽  
Mehrdad Khamforoush ◽  
Arezou Jafari

2010 ◽  
Vol 61 (1) ◽  
pp. 199-205 ◽  
Author(s):  
T. R. Chaparro ◽  
C. M. Botta ◽  
E. C. Pires

Effluents originated in cellulose pulp manufacturing processes are usually toxic and recalcitrant, specially the bleaching effluents, which exhibit high contents of aromatic compounds (e.g. residual lignin derivates). Although biological processes are normally used, their efficiency for the removal of toxic lignin derivates is low. The toxicity and recalcitrance of a bleached Kraft pulp mill were assessed through bioassays and ultraviolet absorption measurements, i.e. acid soluble lignin (ASL), UV280, and specific ultraviolet absorption (SUVA), before and after treatment by an integrated system comprised of an anaerobic packed-bed bioreactor and oxidation step with ozone. Furthermore, adsorbable organic halides (AOX) were measured. The results demonstrated not only that the toxic recalcitrant compounds can be removed successfully using integrated system, but also the ultraviolet absorption measurements can be an interesting control-parameter in a wastewater treatment.


2000 ◽  
Vol 16 (5) ◽  
pp. 744-750 ◽  
Author(s):  
Y.-C. Hu ◽  
J. Kaufman ◽  
M.W. Cho ◽  
H. Golding ◽  
J. Shiloach

Sign in / Sign up

Export Citation Format

Share Document