microRNA 166: an evolutionarily conserved stress biomarker in land plants targeting HD-ZIP family

Author(s):  
Ankita Yadav ◽  
Sanoj Kumar ◽  
Rita Verma ◽  
Charu Lata ◽  
Indraneel Sanyal ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Go Takahashi ◽  
Shigeyuki Betsuyaku ◽  
Natsuki Okuzumi ◽  
Tomohiro Kiyosue ◽  
Yuki Hirakawa

Growth and development of land plants are controlled by CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) family of peptide hormones. In contrast to the genetic diversity of CLE family in flowering plants, the liverwort Marchantia polymorpha possesses a minimal set of CLE, MpCLE1(TDIF homolog), and MpCLE2 (CLV3 homolog). MpCLE1 and MpCLE2 peptides exert distinct function at the apical meristem of M. polymorpha gametophyte via specific receptors, MpTDIF RECEPTOR (MpTDR) and MpCLAVATA1 (MpCLV1), respectively, both belonging to the subclass XI of leucine-rich repeat receptor-like kinases (LRR-RLKs). Biochemical and genetic studies in Arabidopsis have shown that TDR/PXY family and CLV1/BAM family recognize the CLE peptide ligand in a heterodimeric complex with a member of subclass-II coreceptors. Here we show that three LRR-RLK genes of M. polymorpha are classified into subclass II, representing three distinct subgroups evolutionarily conserved in land plants. To address the involvement of subclass-II coreceptors in M. polymorpha CLE signaling, we performed molecular genetic analysis on one of them, MpCLAVATA3 INSENSITIVE RECEPTOR KINASE (MpCIK). Two knockout alleles for MpCIK formed narrow apical meristems marked by promMpYUC2:GUS marker, which were not expanded by MpCLE2 peptide treatment, phenocopying Mpclv1. Loss of sensitivity to MpCLE2 peptide was also observed in gemma cup formation in both Mpclv1 and Mpcik. Biochemical analysis using a Nicotiana benthamiana transient expression system revealed weak association between MpCIK and MpCLV1, as well as MpCIK and MpTDR. While MpCIK may also participate in MpCLE1 signaling, our data show that the conserved CLV3-CLV1-CIK module functions in M. polymorpha, controlling meristem activity for development and organ formation for asexual reproduction.


2018 ◽  
Vol 28 (3) ◽  
pp. 479-486.e5 ◽  
Author(s):  
Shohei Yamaoka ◽  
Ryuichi Nishihama ◽  
Yoshihiro Yoshitake ◽  
Sakiko Ishida ◽  
Keisuke Inoue ◽  
...  

2021 ◽  
Author(s):  
Go Takahashi ◽  
Shigeyuki Betsuyaku ◽  
Natsuki Okuzumi ◽  
Tomohiro Kiyosue ◽  
Yuki Hirakawa

AbstractGrowth and development of land plants are controlled by CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) family of peptide hormones. In contrast to the genetic diversity of CLE family in flowering plants, the liverwort Marchantia polymorpha possesses a minimal set of CLE, MpCLE1(TDIF homolog) and MpCLE2 (CLV3 homolog). MpCLE1 and MpCLE2 peptides exert distinct function at the apical meristem of M. polymorpha gametophyte via specific receptors, MpTDIF RECEPTOR (MpTDR) and MpCLAVATA1 (MpCLV1), respectively, both belonging to the subclass XI of leucine-rich repeat receptor-like kinases (LRR-RLKs). Biochemical and genetic studies in Arabidopsis have shown that TDR/PXY family and CLV1/BAM family recognize the CLE peptide ligand in a heterodimeric complex with a member of subclass-II coreceptors. Here we show that three LRR-RLK genes of M. polymorpha are classified into subclass II, representing three distinct subgroups evolutionarily conserved in land plants. To address the involvement of subclass-II coreceptors in M. polymorpha CLE signaling, we performed molecular genetic analysis on one of them, MpCLAVATA3 INSENSITIVE RECEPTOR KINASE (MpCIK). Two knockout alleles for MpCIK formed narrow apical meristems marked by promMpYUC2:GUS marker, which were not expanded by MpCLE2 peptide treatment, phenocopying Mpclv1. Loss of sensitivity to MpCLE2 peptide was also observed in gemma cup formation in both Mpclv1 and Mpcik. Biochemical analysis using a Nicotiana benthamiana transient expression system revealed weak association between MpCIK and MpCLV1, as well as MpCIK and MpTDR. While MpCIK may also participate in MpCLE1 signaling, our data show that the conserved CLV3-CLV1-CIK module functions in M. polymorpha, controlling meristem activity for development and organ formation for asexual reproduction.


2020 ◽  
Author(s):  
Mara Sgroi ◽  
Uta Paszkowski

AbstractArbuscular mycorrhizal symbiosis (AMS) arose in land plants more than 400 million years ago, perhaps acting as a major contributor to plant terrestrialization. The ability to engage in AMS is evolutionarily conserved across most clades of extant land plants, including early diverging bryophytes. Despite its broad taxonomic distribution, little is known about the molecular components that underpin AMS in early diverging land plants as the mechanisms regulating the symbiosis were primarily characterized in angiosperms. Several AMS associated genes were recently shown to be conserved in liverworts and hornworts, but evidence of them being associated with symbiosis in bryophytes is scarce. In this study, we characterised the dynamic response of the liverwort Marchantia paleacea to Rhizophagus irregularis colonization by time-resolved transcriptomics across progressive stages of symbiosis development. Gene orthology inference and comparative analysis of the M. paleacea transcriptional profile with a well characterised legume model -Medicago truncatula - revealed a deep conservation of transcriptional responses to AMS across distantly related species. We identified evolutionarily conserved patterns of expression of genes required for pre-symbiotic signalling, intracellular colonization and symbiotic nutrient exchange. Our study demonstrates that the genetic machinery regulating key aspects of symbiosis in plant hosts is largely conserved and coregulated across distantly related land plants. If bryophytes are confirmed to be monophyletic, our analysis provides novel insights on the first molecular pathways associated with symbiosis at the dawn of plant colonization of land.Significance StatementArbuscular mycorrhizal symbiosis (AMS) between plants and soil fungi was proposed as one of the key adaptations enabling land colonization by plants. The symbiosis is widespread across most extant plant clades, including early-diverging bryophytes, suggesting that it evolved before the last common ancestor of land plants. Recent phylogenetic analyses uncovered that genes regulating AMS in angiosperms are present in the genomes of bryophytes. Our work shows that a set of these genes are transcriptionally induced during AMS in liverworts. Based on the conservation of their transcriptional profiles across land plants, we propose that these genes acquired an AMS-associated function before the last common ancestor of land plants.


2020 ◽  
Vol 61 (4) ◽  
pp. 675-684
Author(s):  
Imran Pancha ◽  
Kaumeel Chokshi ◽  
Kan Tanaka ◽  
Sousuke Imamura

Abstract Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays an important role in the regulation of cell growth and the sensing of nutrient and energy status in eukaryotes. In yeasts and mammals, the roles of TOR have been very well described and various functions of TOR signaling in plant lineages have also been revealed over the past 20 years. In the case of microalgae, the functions of TOR have been primarily studied in the model green alga Chlamydomonas reinhardtii and were summarized in an earlier single review article. However, the recent development of tools for the functional analysis of TOR has helped to reveal the involvement of TOR in various functions, including autophagy, transcription, translation, accumulation of energy storage molecules, etc., in microalgae. In the present review, we discuss recent novel findings relating to TOR signaling and its roles in microalgae along with relevant information on land plants and also provide details of topics that must be addressed in future studies to reveal how TOR regulates various physiological functions in microalgae.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


Sign in / Sign up

Export Citation Format

Share Document