Effects of Superabsorbent Polymer on Soil Water Content and Sugarcane Germination and Early Growth in Sandy Soil Conditions

Sugar Tech ◽  
2018 ◽  
Vol 21 (3) ◽  
pp. 444-450 ◽  
Author(s):  
Kenta Watanabe ◽  
Samran Saensupo ◽  
Yanischa Na-iam ◽  
Peeraya Klomsa-ard ◽  
Klanarong Sriroth
2018 ◽  
Vol 22 (7) ◽  
pp. 4125-4143 ◽  
Author(s):  
Enrica Perra ◽  
Monica Piras ◽  
Roberto Deidda ◽  
Claudio Paniconi ◽  
Giuseppe Mascaro ◽  
...  

Abstract. This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models – CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) – are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with bias-corrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971–2000) and future (2041–2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables – discharge, soil water content, and actual evapotranspiration – are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1 m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM).


2014 ◽  
Vol 6 (4) ◽  
pp. 125 ◽  
Author(s):  
Anne Karuma ◽  
Peter Mtakwa ◽  
Nyambilila Amuri ◽  
Charles K. Gachene ◽  
Patrick Gicheru

Soil water conservation through tillage is one of the appropriate ways of addressing soil moisture deficit in rainfed agriculture. This study evaluated the effects of tillage practices on soil moisture conservation and crop yields in Mwala District, Eastern Kenya during the long rains (LR) and short rains (SR) of 2012/13. Six tillage systems: Disc plough (MB), Disc plough and harrowing (MBH), Ox-ploughing (OX), Subsoiling – ripping (SR), Hand hoe and Tied Ridges (HTR) and Hand hoe only (H) and, three cropping systems namely, sole maize, sole bean and maize - bean intercrop, were investigated in a split-plot design with four replicates. Data on soil water content was monitored at different weeks after planting and the crop yields at end of each growing season. A three-season average shows that soil water content and crop yields were higher in conventional tillage methods compared to the conservation tillage methods. Long term tillage experiments are thus required at different locations, under various environmental and soil conditions to validate the study findings.


Soil Research ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 289 ◽  
Author(s):  
Dieter Geesing ◽  
Martin Bachmaier ◽  
Urs Schmidhalter

Soil water research requires methods to perform accurate measurements. A capacitance probe gauge has characteristics that seem to make it an attractive replacement for neutron scatter gauges to measure soil water content, but there is evidence that capacitance systems should be calibrated for individual soils. Laboratory calibrations and many field calibration methods are costly and time-consuming, and controlled conditions and disturbed soil samples do not always reflect field conditions, and thus, they are inadequate for practical use. The objectives of the present study were (i) to test a simple field calibration method for a recently developed capacitive sensor even under highly variable soil texture conditions, and (ii) to validate this approach under various soil moisture conditions. Soil samples were taken 0.5 m from the access tube of the sensor and a whole field calibration and several site-specific calibrations were developed using 10–142 observations per site under different soil water regimes. A regression of soil water content estimated by sensor reading on water content obtained by core sampling showed no significant difference in the slope and intercept of the 1:1 line when the field calibration was applied. However, the precision of the calibration was only considerably increased if the estimations were based on site-specific calibrations developed on at least 35 observations per site. The precision and accuracy of the calibration equations were not affected when data were obtained only under wet or dry soil conditions. The method presented in this paper is a speedy and cheap way to calibrate capacitance probe sensors.


2021 ◽  
Vol 480 ◽  
pp. 118614
Author(s):  
P. Défossez ◽  
G. Veylon ◽  
M. Yang ◽  
J.M. Bonnefond ◽  
D. Garrigou ◽  
...  

PIERS Online ◽  
2010 ◽  
Vol 6 (5) ◽  
pp. 411-414
Author(s):  
Faycal Rejiba ◽  
Florence Sagnard ◽  
Cyril Schamper ◽  
Michel Froumentin ◽  
Roger Guerin

2004 ◽  
Vol 3 (4) ◽  
pp. 1063-1071 ◽  
Author(s):  
S. Lambot ◽  
J. Rhebergen ◽  
I. van den Bosch ◽  
E. C. Slob ◽  
M. Vanclooster

Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 773-776 ◽  
Author(s):  
I. A. M. Saeed ◽  
D. I. Rouse ◽  
J. M. Harkin ◽  
K. P. Smith

Soil column studies were conducted to investigate the influence of soil water content and temperature on the efficacy of metham-sodium and its degradation product methyl isothiocyanate against Verticillium dahliae. The viability of the microsclerotia (MS) of the fungus in the top 30 cm of fumigated and control columns was measured. Temperatures for studies were 2 or 22°C, and the soil water content, expressed as soil matric potential, varied from -23 (wet), -113 (moist), to -2485 J/kg (dry). There was a significant interaction of soil water content and temperature on the efficacy of metham-sodium against V. dahliae MS. For the low soil temperature (2°C) the fumigant was more effective against MS of the fungus in wet than in moist or dry soil Soil water content did not affect fungicidal activity of metham-sodium when the soil columns were maintained at 22°C. These results suggest that the fumigant has a greater efficacy against V. dahliae in wet/cold soil conditions compared to the other conditions tested. Consequently, it was recommended that metham-sodium be applied to fields by chemigation in late fall or early spring to obtain efficacious results.


Sign in / Sign up

Export Citation Format

Share Document