Consideration of geomorphic indices in assessment of relative active tectonics in a part of seismogenic compressional Kashmir Basin

2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Umair Ali ◽  
Syed Ahmad Ali ◽  
Maqbool Yousuf ◽  
Qazi Akhter Rasool ◽  
Mukeem Ahmad ◽  
...  
2004 ◽  
Vol 36 (4) ◽  
pp. 1716 ◽  
Author(s):  
E. Zovoili ◽  
E. Konstantinidi ◽  
I. K. Koukouvelas

Most active processes on the surface imply that tectonics and geomorphology converge in a way that landscape change may be used as a tectonic signal, given that erosion and weathering have been taken into account. We selected two faults, the Kompotades and the Nea Anchialos faults in the Sperchios and South Thessaly rift zones respectively, and we performed a morphometric analysis. This analysis comprises geomorphic indices that have been used successfully in studies of active tectonics, as the mountain front sinuosity index (Smf), stream gradient index (SL) and valley floor width to valley height ratio (Vf). At both studied mountain fronts, the Vf index ranged between 0,4 to 1,2, implying high uplift rates, while the Smf «1 index revealed relatively high tectonic activity, which decreases towards the west. On the other hand, the SL index though more sensitive to non-tectonic processes, (i.e. the rock resistance, stream length) is less indicative of tectonic activity. Based on the distribution of the geomorphic indices a two-fault strand model is suggested forming the mountain front in the two examples with the range-ward fault strand to be more appropriate for Kompotades fault and the basinward fault strand for Nea Anchialos fault.


2021 ◽  
Vol 21 (5) ◽  
pp. 1195-1209
Author(s):  
Berna GEÇKİN ◽  
Hasan SÖZBİLİR ◽  
Çağlar ÖZKAYMAK ◽  
Mustafa SOFTA

2020 ◽  
Author(s):  
Bikram Singh Bali ◽  
Ahsan Afzal Wani

Abstract Kashmir basin is considered to be tectonically active where damaging earthquakes (historical and instrumental) and landslides have occurred. These geologic catastrophes make Kashmir valley prone to hazards. The fault bound Kashmir basin is marked by two mountain fronts: MF1 associated with the Panjal Thrust (PT) and Balapor Fault (BF) and MF2 associated with the Zanskar Thrust. These two structural units make Kashmir valley very susceptible to earthquakes. With this in view the whole basin was divided into 22 sub-basins. However only nine extreme north and south sub basins (five extreme southern and four northern extreme north) were studied to carry out relative tectonic activity of these two tectonic units. With the help of K-mean clustering of eight basin-related geomorphic indices (Hypsometric integral (Hi), Asymmetry factor (Af), Mountain front sinuosity (Smf), Basin shape (Circularity ratio (KA) and Elongation ratio (Eb)), Form factor (Ff), Bifurcation ratio (Rb) and Sinuosity index (Si) were calculated. The results of the geomorphic indices were correlated with the structural and seismic data after that they were grouped into low three (Class1), moderate (class2) and high (class3) relative tectonic activity zones based on the quantified geomorphic indices, earthquake data, structural data and field observations. The overall results infer the tectonic activity dies out towards the north of the Kashmir Valley. It was observed that the highest tectonic activity mostly corresponds to the sub basins in vicinity of the PT and BF stretching 100 Km from Shopian to Baramulla. The least tectonic activity was found to be associated with the ZT lying to the north and northeast part of the Kashmir Valley. The seismic frequency and the overall data analysis infer that the south and Southwestern side of the Kashmir has potential of moderate earthquake in future.


Sign in / Sign up

Export Citation Format

Share Document