Morphometric Parameters and Neotectonics of Kalyani River Basin, Ganga Plain: A Remote Sensing and GIS Approach

2018 ◽  
Vol 91 (6) ◽  
pp. 679-686 ◽  
Author(s):  
Dhirendra Kumar ◽  
Dhruv Sen Singh ◽  
Shailendra Kaumar Prajapati ◽  
Imran Khan ◽  
Pawan Kumar Gautam ◽  
...  
Author(s):  
E. D. Oruonye ◽  
Y. M. Ahmed

Remote sensing and GIS techniques have been increasingly used in characterization of drainage basin and prioritization of erosion prone watershed. This study uses remote sensing and GIS to characterise drainage basin morphometry and prioritize soil erosion prone sub watershed in the Lamurde watershed in Taraba state Nigeria. The study adopted standard formulae and methods to compute the morphometric parameters. The Lamurde watershed was delineated to fifteen sub-watersheds with each coded as WS1 to WS15. The result of the findings reveals that Lamurde watershed has a dendritic to sub-dendritic drainage pattern with the smaller streams intersecting the main trunk at acute angles. The findings reveal that Lamurde is a ninth order stream with total area of 1,458.66 km2 and a perimeter of 395.93 km. The basin also has 258,493 total number of streams. The main soil types in the Lamurde basin are fluvisol, lithosol, ferric luvisols and humic nitosols. The surface soil texture of the area is mainly loamy type and particle size classes are fine loamy type. Depth of soil varies from shallow to very deep and having parent material derived from sandstones, mudstones and shales. The findings of the study reveals that watershed: WS7, WS8, WS5, WS11, WS15, WS14, WS2 and WS6 in ascending order are very highly vulnerable to soil erosion. Despite inherent limitation in the use of morphometric parameters to prioritize erosion prone sub watersheds, it is most suitable in the present circumstances because of inadequate information and lack of functional measurement station in the basin, since they have more stable and accessible data on which prioritization of the watersheds can be based on. This study contributes to the problem of dearth of information regarding the susceptibility to erosion in the Lamurde River Basin in Taraba State Nigeria. Based on this findings, these sub watersheds should be given higher priority on any soil conservation intervention measures in the study area. This will go a long way to help address the problem of soil erosion in the area.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Avijit Mahala

AbstractDrainage morphometric parameters are important indicator to understand the hydrological and morphological characteristics of any region. Present study aims to understand the hydrological and morphological characteristics in two different morpho-climatic settings from drainage basin morphometric parameters. Remote sensing and GIS have been used as efficient tools in delineating and understanding of any drainage basin morphometry. The Kosi River basin of northern India for the mountain–plain tropical environment and Kangsabati River basin of eastern India for the plateau–plain sub-humid environment has been selected for the present study. The geological, geomorphological, hydrological, fluvial characteristics have been stressed out under linear, areal and relief aspects of morphometric parameters. The drainage morphometric parameters have been determined and measured after using the Advanced Space borne Thermal Emission and Reflection Radiometer global DEM (90 m) in ARC GIS 10.1. All the linear morphometric measures of mountain–plain humid Kosi River basin indicate its high flood potentiality, whereas, linear morphometric measures of Kangsabati River basin indicate less flood potentiality and plateau landform characteristics of sub-humid environment. The mean bifurcation ratio also indicates Kosi River has greater flood potentiality than Kangsabati River. Kosi River has drained large amount of water due to its near-circular basin shape than Kangsabati River which has an elongated shape. All the relief characteristics indicate that tropical mountain–plain environment dominated Kosi River basin is in rejuvenated or young stage of geomorphic development, whereas sub-humid plateau–plain dominated Kangsabati River basin is in mature stage of geomorphic development. Most of the morphometric characteristics indicate there are high geologic and geomorphological controls on river basin characteristics. The remote sensing and GIS tool have been successfully implemented throughout the study to understand the morphometric characteristics in two different morpho-climatic settings. Also, the results can be used for plan formation and sustainable management of the study area.


2019 ◽  
Vol 35 (9) ◽  
pp. 954-975
Author(s):  
Olutoyin Adeola Fashae ◽  
Rotimi Oluseyi Obateru ◽  
Adeyemi Oludapo Olusola

Sign in / Sign up

Export Citation Format

Share Document