scholarly journals Geoelectrical investigation of groundwater potential and vulnerability of Oraifite, Anambra State, Nigeria

2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Joy O. Eugene-Okorie ◽  
Daniel N. Obiora ◽  
Johnson C. Ibuot ◽  
Desmond O. Ugbor

Abstract Electrical resistivity survey employing vertical electrical sounding was carried out in Oraifite, Southeastern Nigeria, involving a total of twenty soundings across, in order to assess the groundwater potential and the aquifer vulnerability in Oraifite. The field data were interpreted using the WINRESIST software, and the resulting geoelectric curves give the resistivities, depths and thicknesses of each geoelectrical layer. Dar Zarrouk parameters and aquifer transmissivity were computed using the values of aquifer resistivity and thickness. From the results, variations of the computed parameters were observed. Aquifer resistivity ranges from 420.1 to 27,585.8 Ωm having an average value of 4906.3 Ωm, while its thickness varies from 13.4 to 93. 9 m. Longitudinal conductance varies from 0.0015 to 0.2136 Ω−1, transverse resistance ranges from 29,388.88 to 1,158,604.0 Ωm2, while the transmissivity varies from 1.1692 to 123.7905m2/day. The contour maps reveal the distributions of these parameters, which help in delineating zones with different layer characteristics. The result from this study can be a reference for decision making in the abstraction and management of groundwater repositories.

2020 ◽  
Vol 4 (2) ◽  
pp. 99-102
Author(s):  
Johnson C. Ibuot ◽  
Moses M. M. Ekpa ◽  
Doris O. Okoroh ◽  
Aniefiok S. Akpan Emmanuel T. Omeje

Geoelectric survey employing Vertical Electrical Sounding (VES) was carried out in order to assess the groundwater repositories. A total of seven soundings were obtained with their layer resistivity, thickness and depth within the maximum electrode separation. The geoelectric parameters obtained were used to estimate the Dar-Zarrouk parameters (longitudinal conductance and transverse resistance), hydraulic conductivity and transmissivity. The result shows the aquifer resistivity ranging from 77.14 to 784.76 Ωm, with thickness ranging from 28.78 to 80.04 m. The longitudinal conductance have values ranging from 0.071 to 0.825 Ω-1 while the values of hydraulic conductivity and transmissivity range from 1.087 to 5.881 m/day and 60.180 to 374.031 𝑚2/day respectively. The contour maps generated show the variation of these parameters across the subsurface, and areas with poor protective capacity were delineated. The results also delineate the groundwater potential of the study area as moderate, while the corrosivity rating indicates non-corrosive and slightly corrosive.


2020 ◽  
Vol 4 (2) ◽  
pp. 102-104
Author(s):  
Johnson C. Ibuot ◽  
Moses M. M. Ekpa ◽  
Doris O. Okoroh ◽  
Aniefiok S. Akpan Emmanuel T. Omeje

Geoelectric survey employing Vertical Electrical Sounding (VES) was carried out in order to assess the groundwater repositories. A total of seven soundings were obtained with their layer resistivity, thickness and depth within the maximum electrode separation. The geoelectric parameters obtained were used to estimate the Dar-Zarrouk parameters (longitudinal conductance and transverse resistance), hydraulic conductivity and transmissivity. The result shows the aquifer resistivity ranging from 77.14 to 784.76 Ωm, with thickness ranging from 28.78 to 80.04 m. The longitudinal conductance have values ranging from 0.071 to 0.825 Ω-1 while the values of hydraulic conductivity and transmissivity range from 1.087 to 5.881 m/day and 60.180 to 374.031 𝑚2/day respectively. The contour maps generated show the variation of these parameters across the subsurface, and areas with poor protective capacity were delineated. The results also delineate the groundwater potential of the study area as moderate, while the corrosivity rating indicates non-corrosive and slightly corrosive.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Sixtus Nwachukwu ◽  
Rasaq Bello ◽  
Ayomide O. Balogun

Abstract An investigation has been made of the groundwater potentials of Orogun Town, Ughelli North Local Government Area of Delta State, Nigeria, using electrical resistivity survey. This study motivated to determine electrical resistivity parameters of the area. The aim of this work is to use electrical resistivity method to explore the groundwater potentials of Orogun Town with the determination of its Dar Zarrouk parameters. A total of eight vertical electrical sounding (VES) were conducted with maximum electrode spacing of 150 m. The data were acquired using ABEM SAS 4000 Terrameter and processed using IPI2win and Interpex softwares. The groundwater potentials of the area are evaluated based on the longitudinal conductance (S), transverse resistance (T), coefficient of electrical anisotropy (λ), resistivity for the formation ($$\rho_{\text{m}}$$ρm), reflection coefficient (RC) and resistivity contrast (FC). The results reveal four subsurface geoelectric layers in seven of the eight VES while one VES revealed three subsurface geoelectric layers. Resistivity values for all the layers in the study area are very high, higher than what is expected in a sedimentary basin as we have in the study area. The resistivity values range from 8470 Ωm (layer 1, VES 7) to 118,030,000 Ωm (layer 3, VES 8). Depth to aquifer in the study area ranged from 1.61 m (VES 2) to 12.41 m (VES 1), while resistivity values of the aquifer ranged from 64,182 Ωm (VES 3) to 118,030,000 Ωm (VES 8). The results from the formation parameters evaluated showed that the area has good groundwater potential but might have been highly contaminated, especially from hydrocarbon sources and other man-made pollutants. The suggested contamination of the aquifer is as a result of the high values of resistivity of the aquifer layers.


2021 ◽  
Vol 30 (1) ◽  
pp. 43-52
Author(s):  
Kenechukwu A. Ifeanyichukwu ◽  
Elizabeth Okeyeh ◽  
Okechukwu E. Agbasi ◽  
Onwe I. Moses ◽  
Ogechukwu Ben-Owope

In Nnewi, Anambra State Nigeria, twenty vertical electrical sounding (VES) were performed to delineate vulnerability and transmissivity of identified aquifer within the study area. Hydraulic parameters (transverse resistance, longitudinal conductivity, hydraulic conductivity and transmissivity) were delineated from geoelectrical parameters (depth, thickness, and apparent resistance). The geo- parameters of the aquifer: apparent resistance from 1000.590 to 1914.480, thickness from 42.850 – 66.490 m and 65.530 to 100.400 m of depth. The estimated hydraulic parameters of the aquifers are transverse resistance 54264.383 - 104568.898 Ωm, longitudinal conductance 0.029 – 0.062 mho, hydraulic conductivity 0.664 – 2.015 m/day and transmis- sivity between 4.167 and 13.963 m2/day. All aquifers have poor protective capacity, 40 percent of the aquifers have low classification with smaller withdrawal potential for local groundwater supply, while 60 percent of the delineated aquifer has intermediate classification and withdrawal potential for local groundwater supply. Due to its groundwater supply potential and protective capacity, the eastern part of the study area has stronger groundwater potential.


2021 ◽  
Vol 2 (5) ◽  
pp. 18-23
Author(s):  
A. Nur ◽  
A. Taiyib ◽  
I. S. Nggada

Twenty-two Vertical Electrical Sounding (VES) were carried out to evaluate groundwater potential and aquifer protective capacity of the overburden units using Schlumberger configuration. It was observed that H-curve is the dominant curve type in the study area. The Geo-electro stratigraphic section revealed that the geologic sequence beneath the study area is composed of topsoil, highly weather basement, partly fractured basement and fresh basement. The first layer has an average thickness and resistivity of 1 m and 130 Ωm, respectively. The second layer has an average thickness of 14 m and an average resistivity of 53 Ωm. The third layer is partly fracture basement with an average resistivity of 747 Ωm while at some VES point represents fresh basement. The highly weathered basement and partly fracture basement layer make up the water bearing formation of the area. Dar-Zarrouk parameter revealed that the area under study has protective capacity range from weak to good capacity of the overburden material. Areas that are classified as poor and weak are indicative areas are thus vulnerable to infiltration of leachate and other surface contaminations. The groundwater potential of the area ranges from low to moderate potential; the moderate zone constitutes 86% while the low potential constitutes 14% of the study area. The transverse resistance within the study area ranges from 119.6 to 6983.7 ohms-m2 with an average value of 1024.59 ohms-m2. Hydraulic conductivity values determined from geoelectrical technique range from 3.05 to 38.04 m/day with an average value of 14.86 m/day.


10.23856/3105 ◽  
2018 ◽  
Vol 31 (6) ◽  
pp. 52-66
Author(s):  
Julius Otutu Oseji ◽  
James Chucks Egbai

 Electrical resistivity survey employing Vertical Electrical Sounding techniques of Schlumberger arrangement were carried out at seven (7) fairly distributed stations with 154 Vertical Electrical Soundings in Aragba-Okpe. The data obtained from the field were plotted on a log-log graph and interpreted qualitatively by inspection and quantitatively by partial curve matching. The results obtained were improved with the aid of computer iteration using the Winresist Software to delineate the thickness and depth of each layers as well as the resistivity value. These layers were grouped together in to geologic depth intervals known as the Geoelectric sections for interpretations. Using knowledge of both the local geology of Aragba-Okpe and the resistivity of the layers, the Geoelectric sections were interpreted. The study revealed that boreholes for sustainable water supply could be drilled to a depth of 30 m in Aragba-Okpe, However, the fifth layer within Aragba Primary School, Aragba Secondary School and Oviri Aragba Road (VES 1, 5 and 7) are the best locations for sustainable water supply The overburden protective capacities of the aquifer in Aragba-Okpe were evaluated using the Dar-zarrouk parameters. The result also revealed poor aquifer protection ratings of less than 0.1 in all the stations. The groundwater in Aragba-Okpe is therefore not protected and prone to contamination in the event of pollution.


2016 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Chika Osele ◽  
Ajana Onwuemesi ◽  
Emmanuel Anakwuba ◽  
Augustine Chinwuko

<p>Surface geo-electrical survey using vertical electrical sounding (VES) method has been carried out in Onitsha and environs in southwestern part of Anambra state in order to determine the aquifer characteristics and groundwater potential of the area. Eleven vertical electrical soundings were carried out within the area of study using schlumberger array configuration. The interpretation of the vertical electrical sounding (VES) data revealed three to five geoelectric units with depth to the aquiferous layers ranging from 21 to 78m and resistivity of the saturated layers varying between 20 and 5600 ohm-m. Aquifer characteristics such as transmissivity and hydraulic conductivity calculated from interpretated VES result ranged from 2.55m2/day to 29.01m2/day and 0.03m/day to 1.37m/day respectively. This result shows that the water saturated sandstone units of the study area is hydrological good and capable of producing optimum groundwater yield. Furthermore, borehole could be drilled at depth between 40 and 110m in the area for sustainable water supply and hydrochemical study carried out to determine the water quality for domestics and municipal purposes.</p>


2016 ◽  
Vol 63 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Opeyemi J. Akinrinade ◽  
Rasheed B. Adesina

AbstractThis study provides a model for the prediction of groundwater potential and vulnerability of basement aquifers in parts of Akure, Southwestern Nigeria. Hydrogeophysical surveys involving very-low-frequency electromagnetic (VLF-EM) profiling and electrical resistivity (ER) sounding, as well as evaluation of hydraulic gradient using three-point method, were carried out. Ten VLF-EM reconnaissance survey traverses, with lengths ranging from 55 m to 75 m, at 10 m station separation, and 12 vertical electrical sounding (VES) stations were occupied. Two-dimensional map of the filtered real component reveals areas of high conductivity, indicative of linear features that can serve as a reservoir or conduit for fluid flow. Interpretation of the VES results delineates three to four geoelectric units. Two aquifer zones were identified, with resistivity values in the ranges of 20 Ωm to 310 Ωm and 100 Ωm to 3,000 Ω m, respectively. Transverse resistance, longitudinal conductance, coefficient of anisotropy and hydraulic gradient have values ranging from 318.2 Ωm2 to 1,041.8 Ωm2, 0.11 mhos to 0.39 mhos, 1.04 to 1.74 and 0.017 to 0.05, respectively. The results of this study identified two prospective borehole locations and the optimum position to site the proposed septic system, based on the aquifer’s protective capacity and groundwater flow properties.


Warta Geologi ◽  
2021 ◽  
Vol 47 (2) ◽  
pp. 103-112
Author(s):  
S.N. Yusuf ◽  
◽  
J.M. Ishaku ◽  
W.M. Wakili ◽  
◽  
...  

Karlahi is largely underlain by granites and migmatites gneiss of the Adamawa Massif. The area lies west of Benue Trough and east of Cameroon volcanic line. The aim of this paper is to determine hydraulic properties of water bearing layer using parameters derived from Dar-Zarrouk equation and characterized them into groundwater potential zones. The resistivity values of the weathered and slightly weathered layers which make up the water bearing layers were added and an average was taken and used as the resistivity of the water bearing formation in computation of Dar-Zarrouk parameters in Karlahi area. The values of resistivity of water bearing formation ranged from 18 to 4963 Ωm with an average resistivity value of 549 Ωm and the thickness of the water bearing formation ranges from 21 to 32 m with an average thickness of 24.5 m. Conductivity values range from 0.000201 to 0.05509 (σ) while the longitudinal conductance range from 0.00483 to 1.2363 Ω-1, the transverse resistance ranges from 407 to 123504.3 Ωm2. The hydraulic conductivity and transmissivity values range from 0.14 to 25.87 m/day and 3.28 to 580.4 m2/day respectively. The longitudinal conductance values in Karlahi area revealed poor to good with an average longitudinal conductance value that is moderate. High transverse resistance values are located in the central and southern part of Karlahi area while low values are located in the eastern part. The spatial distribution map of transmissivity in the area revealed moderate to high transmissivity values in the north central part and a negligible to low transmissivity in southern part, extreme northeastern part. The groundwater potential map of Karlahi area shows negligible to weak potential groundwater zones in SW and SE, moderate potential in the central to northern part of Karlahi area.


2020 ◽  
Author(s):  
Johnson Cletus Ibuot ◽  
Emmanuel T. Omeje ◽  
Daniel Nnemeka Obiora

Abstract Vertical electrical sounding employing schlumberger electrode configuration was carried out in thirty locations across some parts of Enugu state, to investigate the hydrokinetic properties of hydrogeologic units of the study area. The result shows that resistivity and thickness of aquifer ranges from 27.3 to 59569.0 Ωm and 23.3 to 242.1 m respectively. Permeability and fractional porosity values range from 4531.254 to 74006.76 mD and 0.026 to 0.159. AQI having a mean value of 13.5451 µm range from 6.809 to 52.976 µm. FZI and HFU values range from 37.582 to 1962.074 µm and 18 to 26 respectively. Contour maps were generated from the results to visualize the variations of the hydrokinetic properties across the study area. From the contour maps, southern part of the study area was identified to be characterized with high AQI, FZI and HFU with northwestern part and a small proportion along the southwestern part identified as areas with low AQI, FZI and HFU. HFU along the study area was observed to be fractionated into nine distinct properties (HFU 18, HFU 19, HFU 20, HFU 21, HFU 22, HFU 23, HFU 24, HFU 25, and HFU 26) with HFU 19 and HFU 20 dominating the area. The results from the nine hydraulic flow units based on flow zone indicator cut off values (Log FZI ˃ 0.25) shows that the reservoir quality is very high.


Sign in / Sign up

Export Citation Format

Share Document