scholarly journals Energy storage systems for drilling rigs

Author(s):  
Evgeniy Chupin ◽  
Konstantin Frolov ◽  
Maxim Korzhavin ◽  
Oleg Zhdaneev

AbstractEnergy storage systems are an important component of the energy transition, which is currently planned and launched in most of the developed and developing countries. The article outlines development of an electric energy storage system for drilling based on electric-chemical generators. Description and generalization are given for the main objectives for this system when used on drilling rigs isolated within a single pad, whether these are fed from diesel gensets, gas piston power plants, or 6–10 kV HV lines. The article studies power operating modes of drilling rigs, provides general conclusions and detailed results for one of more than fifty pads. Based on the research, a generic architecture of the energy storage module is developed, and an engineering prototype is built. The efficiency of using a hybrid energy accumulation design is proven; the design calls for joint use of Li-ion cells and supercapacitors, as well as three-level inverters, to control the storage system. The article reviews all possible options for connecting the system into a unified rig power circuit, and the optimum solution is substantiated. The research into the rig operating modes and engineering tests yielded a simplified mathematical model of an energy storage unit integrated into the power circuit of a drilling rig. The model is used to forecast the payoff period of the system for various utilization options and rig operating modes. The findings of this study can help to better understand which type of storage system is the most efficient for energy systems with temporary high load peaks, like drilling rigs.

Author(s):  
Sammy Houssainy ◽  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet’s temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.


Inorganics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 30 ◽  
Author(s):  
Claudio Corgnale

A comprehensive techno-economic analysis of destabilized Li hydrides, used as thermal energy storage systems in concentrating solar power plants, is presented and discussed. Two systems, operating at temperatures on the order of 550–650 °C, are selected as thermal energy storage units for steam power plants, namely the Si-destabilized Li hydride (LiSi) and the Al-destabilized Li hydride (LiAl). Two thermal energy storage systems, operating at temperatures on the order of 700–750 °C, are selected for integration in supercritical CO2 power plants, namely the Si-destabilized Li hydride (LiSi) and the Sn-destabilized Li hydride (LiSn). Each storage system demonstrates excellent volumetric capacity, achieving values between 100 and 250 kWhth/m3. The LiSi-based thermal energy storage systems can be integrated with steam and supercritical CO2 plants at a specific cost between 107 US$/kWhth and 109 US$/kWhth, with potential to achieve costs on the order of 74 US$/kWhth under enhanced configurations and scenarios. The LiAl-based storage system has the highest potential for large scale applications. The specific cost of the LiAl system, integrated in solar steam power plants, is equal to approximately 74 US$/kWhth, with potential to reach values on the order of 51 US$/kWhth under enhanced performance configurations and scenarios.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6521
Author(s):  
Gabriel Nasser Doyle de Doile ◽  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Ivan Bolis ◽  
Karel Janda ◽  
...  

The operation of electrical systems is becoming more difficult due to the intermittent and seasonal characteristics of wind and solar energy. Such operational challenges can be minimized by the incorporation of energy storage systems, which play an important role in improving the stability and reliability of the grid. The economic viability of hybrid power plants with energy storage systems can be improved if regulations enable the remuneration of the various ancillary services that they can provide. Thus, the aim of this study is to provide a literature review regarding the economic feasibility of hybrid wind and solar photovoltaic generation with energy storage systems and its legal and regulatory aspects. Observing the global tendency, new studies should address the technical and economic feasibility of hybrid wind and solar photovoltaic generation in conjunction with, at least, one kind of energy storage system. In addition, it is very important to take into account the regulatory barriers and propose solutions to remove them. It was observed that although regulatory aspects can influence the economic feasibility of hybrid projects, little is known about this relationship among regulatory frameworks. The findings presented in this article are important not only for Brazil, but also for other countries that do not have regulations in force to support the use of energy storage systems in hybrid systems.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2903 ◽  
Author(s):  
Liwei Ju ◽  
Peng Li ◽  
Qinliang Tan ◽  
Zhongfu Tan ◽  
GejiriFu De

To make full use of distributed energy resources to meet load demand, this study aggregated wind power plants (WPPs), photovoltaic power generation (PV), small hydropower stations (SHSs), energy storage systems (ESSs), conventional gas turbines (CGTs) and incentive-based demand responses (IBDRs) into a virtual power plant (VPP) with price-based demand response (PBDR). Firstly, a basic scheduling model for the VPP was proposed in this study with the objective of the maximum operation revenue. Secondly, a risk aversion model for the VPP was constructed based on the conditional value at risk (CVaR) method and robust optimization theory considering the operating risk from WPP and PV. Thirdly, a solution methodology was constructed and three cases were considered for comparative analyses. Finally, an independent micro-grid on an industrial park in East China was utilized for an example analysis. The results show the following: (1) the proposed risk aversion scheduling model could cope with the uncertainty risk via a reasonable confidence degree β and robust coefficient Γ. When Γ ≤ 0.85 or Γ ≥ 0.95, a small uncertainty brought great risk, indicating that the risk attitude of the decision maker will affect the scheduling scheme of the VPP, and the decision maker belongs to the risk extreme aversion type. When Γ ∈ (0.85, 0.95), the decision-making scheme was in a stable state, the growth of β lead to the increase of CVaR, but the magnitude was not large. When the prediction error e was higher, the value of CVaR increased more when Γ increased by the same magnitude, which indicates that a lower prediction accuracy will amplify the uncertainty risk. (2) when the capacity ratio of (WPP, PV): ESS was higher than 1.5:1 and the peak-to-valley price gap was higher than 3:1, the values of revenue, VaR, and CVaR changed slower, indicating that both ESS and PBDR can improve the operating revenue, but the capacity scale of ESS and the peak-valley price gap need to be set properly, considering both economic benefits and operating risks. Therefore, the proposed risk aversion model could maximize the utilization of clean energy to obtain higher economic benefits while rationally controlling risks and provide reliable decision support for developing optimal operation plans for the VPP.


Author(s):  
V. V. Kuvshinov ◽  
E. A. Bekirov ◽  
E. V. Guseva

In the presented work, the possibility of using photovoltaic silicon panels with a double-sided arrangement of solar cells on the front and back sides is presented. With a lack of space for placing solar panels, these types of modules can significantly increase the generation of electrical energy. Equipping photovoltaic systems with rechargeable batteries contributes to a more rational consumption of electrical energy, while energy storage systems significantly increase the efficiency of solar generating systems. The proposed designs are intended to increase the power characteristics of solar energy converters in the winter months, in the presence of snow or when using reflective surfaces on road surfaces. The results of the experimental studies have shown a significant efficiency of the proposed designs, as well as an increase in the total generation of electrical energy. With the development of the global technical potential and a significant increase in the production of power plants for solar energy, a new opportunity has emerged to use combined solar plants for photovoltaic conversion of the flux of incident solar radiation. At the Department of Renewable Energy Sources and Electrical Systems and Networks at Sevastopol State University, at the site of the Institute of Nuclear Energy and Industry, a photovoltaic installation was developed and studied, consisting of two side silicon solar cells and energy storage systems. The article presents the results of experimental and theoretical studies, presents diagrams, drawings and graphs of various characteristics of the FSM-110D photovoltaic panel and storage batteries. The research results show the increased efficiency of the proposed installation, as well as a good possibility of using the presented photovoltaic systems to provide them with autonomous and individual consumers living in the Crimean region and the city of Sevastopol.


2021 ◽  
Author(s):  
Stig Settemsdal ◽  
Saverio Ventrelli

Abstract The paper presents a novel approach for modernizing/retrofitting offshore drilling rig power plants with islanded direct current (DC) power grids and energy storage. The concept has been successfully applied on several offshore rigs which are in operation today and is applicable to jack-ups, semi-submersibles, drill ships, as well as other types of marine support vessels for oil and gas platforms and wind farms. The approach aims to enhance the feasibility of leveraging energy storage solutions on offshore drilling rigs and marine vessels by making use of the existing power plant footprint. Unique measures have also been incorporated into the electrical system architecture to ensure that the reliability and safety of the existing alternating current (AC)-based system are not compromised. This enables operators to capitalize on the numerous benefits of energy storage (e.g., reduced emissions, enhanced dynamic performance for drilling and dynamic positioning, etc.) without having to perform a "rip and replace" of the entire power plant and electrical infrastructure.


2020 ◽  
Vol 173 ◽  
pp. 03004
Author(s):  
Darío Benavides ◽  
Paúl Arévalo ◽  
Luis G. Gonzalez ◽  
José A. Aguado

The importance of energy storage systems is increasing in microgrids energy management. In this study, an analysis is carried out for different types of energy storage technologies commonly used in the energy storage systems of a microgrid, such as: lead acid batteries, lithium ion batteries, redox vanadium flux batteries and supercapacitors. In this work, it is analyzed the process of charging and discharging (slow and fast) in these systems, the calculation of energy efficiency, performance and energy supplied under different load levels, in its normal operating conditions and installed power capacity is developed. The results allow us to choose the optimal conditions of charge and discharge at different levels of reference power, analyzing the strengths and weaknesses of the characteristics of each storage system within a microgrid.


Sign in / Sign up

Export Citation Format

Share Document