scholarly journals Estimating the Health Impact of Climate Change With Calibrated Climate Model Output

2012 ◽  
Vol 17 (3) ◽  
pp. 377-394 ◽  
Author(s):  
Jingwen Zhou ◽  
Howard H. Chang ◽  
Montserrat Fuentes
2021 ◽  
Author(s):  
Michael Steininger ◽  
Daniel Abel ◽  
Katrin Ziegler ◽  
Anna Krause ◽  
Heiko Paeth ◽  
...  

<p>Climate models are an important tool for the assessment of prospective climate change effects but they suffer from systematic and representation errors, especially for precipitation. Model output statistics (MOS) reduce these errors by fitting the model output to observational data with machine learning. In this work, we explore the feasibility and potential of deep learning with convolutional neural networks (CNNs) for MOS. We propose the CNN architecture ConvMOS specifically designed for reducing errors in climate model outputs and apply it to the climate model REMO. Our results show a considerable reduction of errors and mostly improved performance compared to three commonly used MOS approaches.</p>


2011 ◽  
Vol 24 (3) ◽  
pp. 867-880 ◽  
Author(s):  
Jouni Räisänen ◽  
Jussi S. Ylhäisi

Abstract The general decrease in the quality of climate model output with decreasing scale suggests a need for spatial smoothing to suppress the most unreliable small-scale features. However, even if correctly simulated, a large-scale average retained by the smoothing may not be representative of the local conditions, which are of primary interest in many impact studies. Here, the authors study this trade-off using simulations of temperature and precipitation by 24 climate models within the Third Coupled Model Intercomparison Project, to find the scale of smoothing at which the mean-square difference between smoothed model output and gridbox-scale reality is minimized. This is done for present-day time mean climate, recent temperature trends, and projections of future climate change, using cross validation between the models for the latter. The optimal scale depends strongly on the number of models used, being much smaller for multimodel means than for individual model simulations. It also depends on the variable considered and, in the case of climate change projections, the time horizon. For multimodel-mean climate change projections for the late twenty-first century, only very slight smoothing appears to be beneficial, and the resulting potential improvement is negligible for practical purposes. The use of smoothing as a means to improve the sampling for probabilistic climate change projections is also briefly explored.


2014 ◽  
Vol 9 (11) ◽  
pp. 115008 ◽  
Author(s):  
G Lenderink ◽  
B J J M van den Hurk ◽  
A M G Klein Tank ◽  
G J van Oldenborgh ◽  
E van Meijgaard ◽  
...  

2013 ◽  
Vol 7 (2) ◽  
pp. 181-198 ◽  
Author(s):  
Maximilian Auffhammer ◽  
Solomon M. Hsiang ◽  
Wolfram Schlenker ◽  
Adam Sobel

2021 ◽  
Vol 14 (1) ◽  
pp. 107-124
Author(s):  
◽  
Karthik Kashinath ◽  
Mayur Mudigonda ◽  
Sol Kim ◽  
Lukas Kapp-Schwoerer ◽  
...  

Abstract. Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning – when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce. We create “ClimateNet” – an open, community-sourced human-expert-labeled curated dataset that captures tropical cyclones (TCs) and atmospheric rivers (ARs) in high-resolution climate model output from a simulation of a recent historical period. We use the curated ClimateNet dataset to train a state-of-the-art DL model for pixel-level identification – i.e., segmentation – of TCs and ARs. We then apply the trained DL model to historical and climate change scenarios simulated by the Community Atmospheric Model (CAM5.1) and show that the DL model accurately segments the data into TCs, ARs, or “the background” at a pixel level. Further, we show how the segmentation results can be used to conduct spatially and temporally precise analytics by quantifying distributions of extreme precipitation conditioned on event types (TC or AR) at regional scales. The key contribution of this work is that it paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data using a curated expert-labeled dataset – ClimateNet. ClimateNet and the DL-based segmentation method provide several unique capabilities: (i) they can be used to calculate a variety of TC and AR statistics at a fine-grained level; (ii) they can be applied to different climate scenarios and different datasets without tuning as they do not rely on threshold conditions; and (iii) the proposed DL method is suitable for rapidly analyzing large amounts of climate model output. While our study has been conducted for two important extreme weather patterns (TCs and ARs) in simulation datasets, we believe that this methodology can be applied to a much broader class of patterns and applied to observational and reanalysis data products via transfer learning.


2009 ◽  
Vol 6 (6) ◽  
pp. 7143-7178 ◽  
Author(s):  
T. L. A. Driessen ◽  
R. T. W. L. Hurkmans ◽  
W. Terink ◽  
P. Hazenberg ◽  
P. J. J. F. Torfs ◽  
...  

Abstract. The Meuse is an important river in western Europe, and almost exclusively rain-fed. Projected changes in precipitation characteristics due to climate change, therefore, are expected to have a considerable effect on the hydrological regime of the river Meuse. We focus on an important tributary of the Meuse, the Ourthe, measuring about 1600 km2. The well-known hydrological model HBV is forced with three high-resolution (0.088°) regional climate scenarios, each based on one of three different IPCC CO2 emission scenarios: A1B, A2 and B1. To represent the current climate, a reference model run at the same resolution is used. Prior to running the hydrological model, the biases in the climate model output are investigated and corrected for. Different approaches to correct the distributed climate model output using single-site observations are compared. Correcting the spatially averaged temperature and precipitation is found to give the best results, but still large differences exist between observations and simulations. The bias corrected data are then used to force HBV. Results indicate a small increase in overall discharge for especially the B1 scenario during the beginning of the 21st century. Towards the end of the century, all scenarios show a decrease in summer discharge, partially because of the diminished buffering effect by the snow pack, and an increased discharge in winter. It should be stressed, however, that we used results from only one GCM (the only one available at such a high resolution). It would be interesting to repeat the analysis with multiple models.


2010 ◽  
Vol 14 (4) ◽  
pp. 651-665 ◽  
Author(s):  
T. L. A. Driessen ◽  
R. T. W. L. Hurkmans ◽  
W. Terink ◽  
P. Hazenberg ◽  
P. J. J. F. Torfs ◽  
...  

Abstract. The Meuse is an important river in Western Europe, which is almost exclusively rain-fed. Projected changes in precipitation characteristics due to climate change, therefore, are expected to have a considerable effect on the hydrological regime of the river Meuse. We focus on an important tributary of the Meuse, the Ourthe, measuring about 1600 km2. The well-known hydrological model HBV is forced with three high-resolution (0.088°) regional climate scenarios, each based on one of three different IPCC CO2 emission scenarios: A1B, A2 and B1. To represent the current climate, a reference model run at the same resolution is used. Prior to running the hydrological model, the biases in the climate model output are investigated and corrected for. Different approaches to correct the distributed climate model output using single-site observations are compared. Correcting the spatially averaged temperature and precipitation is found to give the best results, but still large differences exist between observations and simulations. The bias corrected data are then used to force HBV. Results indicate a small increase in overall discharge, especially for the B1 scenario during the beginning of the 21st century. Towards the end of the century, all scenarios show a decrease in summer discharge, partially because of the diminished buffering effect by the snow pack, and an increased discharge in winter. It should be stressed, however, that we used results from only one GCM (the only one available at such a high resolution). It would be interesting to repeat the analysis with multiple models.


2013 ◽  
Author(s):  
Maximilian Auffhammer ◽  
Solomon Hsiang ◽  
Wolfram Schlenker ◽  
Adam Sobel

Sign in / Sign up

Export Citation Format

Share Document