scholarly journals Damping-off caused by Pythium aphanidermatum on sugar beet in Egypt

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mohamed Abdellatif A. Mahmoud ◽  
Ayman Faisal Omar ◽  
Ayman A. A. Mohamed ◽  
Moustafa I. Gouda ◽  
Amero A. Emeran
1983 ◽  
Vol 55 (5) ◽  
pp. 431-450
Author(s):  
Mauritz Vestberg ◽  
Risto Tahvonen ◽  
Kyösti Raininko

In pot and field experiments carried out in 1979-1981, the systemic funqicide hymexazol prevented satisfactorily soil borne damping-off of sugar beet caused mainly by the fungus Pythium debaryanum auct. non Hesse. The results with the combination hymexazol + thiram were still better. This treatment gave very good protection against the disease up to about two to three weeks after emergence, increased the yield on the average by 5-10 % and produced considerably thicker and denser stands. Thereafter a large number of beets may have become infected, but no great damage was caused as only few died. Band spraying at emergence using hymexazol with a large amount of water as well as spraying into the seed furrow prevented the outbreak of the disease almost completely. Liming had little effect on damping-off.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
Shaban R. M. Sayed ◽  
Shaimaa A. M. Abdelmohsen ◽  
Hani M. A. Abdelzaher ◽  
Mohammed A. Elnaghy ◽  
Ashraf A. Mostafa ◽  
...  

The role of Pythium oligandrum as a biocontrol agent against Pythium aphanidermatum was investigated to avoid the harmful impacts of fungicides. Three isolates of P. oligandrum (MS15, MS19, and MS31) were assessed facing the plant pathogenic P. aphanidermatum the causal agent of Glycine max damping-off. The tested Pythium species were recognized according to their cultural and microscopic characterizations. The identification was confirmed through sequencing of rDNA-ITS regions including the 5.8 S rDNA. The biocontrol agent, P. oligandrum, isolates decreased the mycelial growth of the pathogenic P. aphanidermatum with 71.3%, 67.1%, and 68.7% through mycoparasitism on CMA plates. While the half-strength millipore sterilized filtrates of P. oligandrum isolates degrade the pathogenic mycelial linear growth by 34.1%, 32.5%, and 31.7%, and reduce the mycelial dry weight of the pathogenic P. aphanidermatum by 40.1%, 37.4%, and 36.8%, respectively. Scanning electron microscopy (SEM) of the most effective antagonistic P. oligandrum isolate (MS15) interaction showed coiling, haustorial parts of P. oligandrum to P. aphanidermatum hyphae. Furthermore, P. oligandrum isolates were proven to enhance the germination of Glycine max seedling to 93.3% in damping-off infection using agar pots and promote germination of up to 80% during soil pot assay. On the other hand, P. oligandrum isolates increase the shoot, root lengths, and the number of lateral roots.


Sugar Tech ◽  
2021 ◽  
Author(s):  
Md Ehsanul Haque ◽  
Dilip K. Lakshman ◽  
Aiming Qi ◽  
Mohamed F. R. Khan

Author(s):  
G. M. Waterhouse

Abstract A description is provided for Pythium aphanidermatum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On a wide range of hosts, often similar to those attacked by P. butleri, but inducing different symptoms, represented in the following families: Amaranthaceae, Amaryllidaceae, Araceae, Basellaceae, Bromeliaceae, Cactaceae, Chenopodiaceae, Compositae, Coniferae, Convolvulaceae, Cruciferae, Cucurbitaceae, Euphorbiaceae, Gramineae, Leguminosae, Linaceae, Malvaceae, Moraceae, Passifloraceae, Rosaceae, Solanaceae, Umbelliferae, Violaceae, Vitaceae, Zingiberaceae. DISEASES: Damping-off of various seedlings; 'cottony-leak' of cucurbit fruit in storage; 'cottony blight' of turf grasses; root and stalk rot of maize. Other hosts: tobacco, sugar-beet, sugar-cane, papaw, pineapple, ginger, bean and cotton. GEOGRAPHICAL DISTRIBUTION: Africa (Central African Republic, Fernando, Ghana, Kenya, Malawi, Mali, Nigeria, Sierra Leone, South Africa, Southern Rhodesia, Sudan, Togo, Zambia); Asia (Ceylon, China, Formosa, India, Indonesia, Israel, Japan, Java, Malaya, Philippines, Sumatra); Australasia & Oceania (Australia, Hawaii, New Caledonia); North America (Canada, Mexico); Central America & West Indies (Antilles, Jamaica, Puerto Rico); South America (Argentina, Brazil, Peru, Venezuela); Europe Austria, Cyprus, Czechoslovakia, Great Britain, Greece, Holland, Italy, Poland, U.S.S.R., Yugoslavia). (CMI Map 309) TRANSMISSION: Soil-borne. Eggplant fruit become infected when blossom end is in contact with soil (5: 465). Readily isolated from soil using fresh potato cubes treated with streptomycin and pimaricin as baits (43, 1519; 43, 46) or seedling papaw roots in soil containing papaw tissue (43, 1720). Also recorded as seed-borne on tomato and cucurbits but doubtful whether seed-transmitted (see Noble et al., An Annotated List of Seed-Borne Diseases, 1958, pp. 23, 25, 124).


Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Sahar Arabiat ◽  
Mohamed F. R. Khan

Rhizoctonia damping-off and crown and root rot caused by Rhizoctonia solani are major diseases of sugar beet (Beta vulgaris L.) worldwide, and growers in the United States rely on fungicides for disease management. Sensitivity of R. solani to fungicides was evaluated in vitro using a mycelial radial growth assay and by evaluating disease severity on R. solani AG 2-2 inoculated plants treated with fungicides in the greenhouse. The mean concentration that caused 50% mycelial growth inhibition (EC50) values for baseline isolates (collected before the fungicides were registered for sugar beet) were 49.7, 97.1, 0.3, 0.2, and 0.9 μg ml−1 and for nonbaseline isolates (collected after registration and use of fungicides) were 296.1, 341.7, 0.9, 0.2, and 0.6 μg ml−1 for azoxystrobin, trifloxystrobin, pyraclostrobin, penthiopyrad, and prothioconazole, respectively. The mean EC50 values of azoxystrobin, trifloxystrobin, and pyraclostrobin significantly increased in the nonbaseline isolates compared with baseline isolates, with a resistant factor of 6.0, 3.5, and 3.0, respectively. Frequency of isolates with EC50 values >10 μg ml−1 for azoxystrobin and trifloxystrobin increased from 25% in baseline isolates to 80% in nonbaseline isolates. Although sensitivity of nonbaseline isolates of R. solani to quinone outside inhibitors decreased, these fungicides at labeled rates were still effective at controlling the pathogen under greenhouse conditions.


2018 ◽  
Vol 153 (3) ◽  
pp. 869-878 ◽  
Author(s):  
Can Zhao ◽  
Yuting Li ◽  
Siying Wu ◽  
Pinpin Wang ◽  
Chenggui Han ◽  
...  

Author(s):  
Haque ME ◽  
◽  
Parvin MS ◽  

Rhizoctonia solani causes pre-emergence and post-emergence damping-off, as well as crown and root rot of sugar beet (Beta vulgaris L.), which significantly affects the yield returns in the USA and Europe. The pathogen overwinters as sclerotia or melanized mycelium. Traditionally, the resistance of cultivars to R. solani is evaluated by scoring disease reactions at the crowns and roots of older seedlings, thus resistance is not evaluated during seed germination. Moreover, earlier studies evaluated cultivars resistance to R. solani using colonized whole barley or wheat grains which, unlike sclerotia, are artificial inocula of the pathogen that require time, space and technical know-how to produce. Moreover, colonized grains are prone to contamination with other pathogens, consumed by rodents/birds while applied in the field, and are often uneconomic. Considering those limitations, a study was undertaken (1) to develop in vitro methods to generate large-scale sclerotia, (2) to compare pathogenic potentials of sclerotia, mycelia, and colonized barley grains for optimization of dampingoff assays, and (3) to evaluate Rhizoctonia resistance of selected commercial cultivars during the seed germination phase. Comparing six different culture media, we found that R. solani had the highest radial growth (8.9 ± 0.04, cm³) at 8-days and the maximum number of sclerotia produced (203 ± 4.6) at 28-days in CV8 medium. We demonstrated significant differences in pathogenicity of the three different forms of R. solani inocula and susceptibility of cultivars to preand post-emergence damping-off. The highest pre-emergence damping-off and root rot were observed with sclerotia, and the highest post-emergence dampingoff was recorded with both sclerotial and colonized barley inocula. In addition, varietal differences in susceptibility to pre- and post-emergence damping-off were noted. The highest pre-emergence damping-off was recorded on cv Crystal 101RR and lowest in Maribo MA 504. The highest post-emergence damping-off was recorded on BTS 8500 and the lowest in Crystal 467. The maximum mean root rot was observed in BTS 8500, BTS 8606, and Crystal 101R. Our studies demonstrated that sclerotia serve as efficient natural inocula, reemphasized that host-pathogen interactions differ at the early vs. late stages of sugar beet growth, and highlighted the need to reevaluate commercial sugar beet cultivars for resistance at the seed germination stage.


Sign in / Sign up

Export Citation Format

Share Document