scholarly journals Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses?

Infection ◽  
2021 ◽  
Author(s):  
Ali Hamady ◽  
JinJu Lee ◽  
Zuzanna A. Loboda

Abstract Objectives The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. Methods/Results In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1–2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. Conclusion Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.

Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1069
Author(s):  
Andrés Herane-Vives ◽  
Susana Espinoza ◽  
Rodrigo Sandoval ◽  
Lorena Ortega ◽  
Luis Alameda ◽  
...  

Diabetes is the fourth cause of death globally. To date, there is not a practical, as well as an accurate sample for reflecting chronic glucose levels. We measured earwax glucose in 37 controls. Participants provided standard serum, glycated hemoglobin (HbA1c) and earwax samples at two time-points, one month apart. The specimens measured baseline fasting glucose, a follow-up postprandial glucose level and a between sample chronic glucose, calculated using the average level on the two occasions. The baseline earwax sample was obtained using a clinical method and the follow-up using a novel self-sampling earwax device. The earwax analytic time was significantly faster using the novel device, in comparison to the clinical use of the syringe. Earwax accurately reflected glucose at both assessments with stronger correlations than HbA1c. Follow-up postprandial concentrations were more significant than their respective fasting baseline concentrations, reflecting differences in fasting and postprandial glycemia and more efficient standardization at follow up. Earwax demonstrated to be more predictable than HbA1c in reflecting systemic fasting, postprandial and long-term glucose levels, and to be less influenced by confounders. Earwax glucose measurements were approximately 60% more predictable than HbA1c in reflecting glycemia over a month. The self-sampling device provided a sample that might accurately reflect chronic glycemia.


Heart ◽  
2020 ◽  
Vol 106 (20) ◽  
pp. 1549-1554 ◽  
Author(s):  
Benoy Nalin Shah ◽  
Dominik Schlosshan ◽  
Hannah Zelie Ruth McConkey ◽  
Mamta Heena Buch ◽  
Andrew John Marshall ◽  
...  

The established processes for ensuring safe outpatient surveillance of patients with known heart valve disease (HVD), echocardiography for patients referred with new murmurs and timely delivery of surgical or transcatheter treatment for patients with severe disease have all been significantly impacted by the novel coronavirus pandemic. This has created a large backlog of work and upstaging of disease with consequent increases in risk and cost of treatment and potential for worse long-term outcomes. As countries emerge from lockdown but with COVID-19 endemic in society, precautions remain that restrict ‘normal’ practice. In this article, we propose a methodology for restructuring services for patients with HVD and provide recommendations pertaining to frequency of follow-up and use of echocardiography at present. It will be almost impossible to practice exactly as we did prior to the pandemic; thus, it is essential to prioritise patients with the greatest clinical need, such as those with symptomatic severe HVD. Local procedural waiting times will need to be considered, in addition to usual clinical characteristics in determining whether patients requiring intervention would be better suited having surgical or transcatheter treatment. We present guidance on the identification of stable patients with HVD that could have follow-up deferred safely and suggest certain patients that could be discharged from follow-up if waiting lists are triaged with appropriate clinical input. Finally, we propose that novel models of working enforced by the pandemic—such as increased use of virtual clinics—should be further developed and evaluated.


2017 ◽  
Vol 45 (12) ◽  
pp. 2824-2834 ◽  
Author(s):  
Anne C.T. Vrancken ◽  
Gerjon Hannink ◽  
Wojciech Madej ◽  
Nico Verdonschot ◽  
Tony G. van Tienen ◽  
...  

Background: Injury or loss of the meniscus generally leads to degenerative osteoarthritic changes in the knee joint. However, the treatment options for symptomatic patients with total meniscectomy are limited. Therefore, we developed a novel, anatomically shaped, total meniscal implant made of polycarbonate urethane. Purpose: To evaluate the in vivo performance of this novel total meniscal implant. The assessment particularly focused on the implant’s response to long-term physiological loading in a goat model and its chondroprotective capacity in comparison to clinically relevant controls. Study Design: Controlled laboratory study. Methods: Surgery was performed to the stifle joint of 26 female Saanen goats, subdivided into 4 groups: implant, allograft, total meniscectomy, and sham surgery. The sham group’s contralateral joints served as nonoperated controls. After 12 months of follow-up, investigators evaluated implant wear, deformation, and the histopathological condition of the synovium and cartilage. Results: Wear of the implant’s articulating surfaces was minimal, which was confirmed by the absence of wear particles in the synovial fluid. Implant deformation was limited. However, one implant failed by complete tearing of the posterior horn extension. No differences in cartilage histopathological condition were observed for the implant, allograft, and meniscectomy groups. However, locally, the cartilage scores for these groups were significantly worse than those of the nonoperated controls. Conclusion: Whereas this study demonstrated that the novel implant is resistant to wear and that deformation after 12 months of physiological loading is acceptable, reinforcement of the implant horns is necessary to prevent horn failure. Although the implant could not protect the cartilage from developing degenerative changes, the progression of damage was similar in the allograft group. Clinical Relevance: This novel polycarbonate urethane implant may have the potential to become an alternative treatment for symptomatic patients with total meniscectomy.


Parasitology ◽  
2007 ◽  
Vol 134 (9) ◽  
pp. 1205-1213 ◽  
Author(s):  
C. A. L. OURA ◽  
R. BISHOP ◽  
B. B. ASIIMWE ◽  
P. SPOONER ◽  
G. W. LUBEGA ◽  
...  

SUMMARYThe ‘Muguga cocktail’ live vaccine, delivered by an infection and treatment protocol, has been widely deployed in Eastern, Central and Southern Africa to protect cattle against East Coast fever, caused by Theileria parva. The vaccine contains 3 component stocks (Muguga, Serengeti-transformed and Kiambu 5). In a previous study, parasites from vaccinated and unvaccinated animals were genotyped with a panel of micro- and minisatellite markers (Oura et al.2004a) and it was shown that only the Kiambu 5 stock establishes a long-term carrier state but there was no evidence for the transmission of this stock. Also parasite genotypes different from the 3 component vaccine stocks were identified in vaccinated animals. We now report a follow-up study on the same farm, some 4 years after the initial vaccination, aimed at establishing the source of the novel parasite genotypes identified in vaccinated cattle, determining the longevity of the carrier state established by the Kiambu 5 vaccine stock and re-examining whether vaccine transmission can occur over a longer time-scale. To do this, samples were taken from vaccinated and unvaccinated cattle and the parasites were genotyped with a series of micro- and minisatellite markers. The data indicate that the vaccine stabilates contain at least 6 parasite genotypes, the Kiambu 5 stock can be detected in many but not all vaccinated cattle for up to 4 years and can be transmitted to unvaccinated cattle which share grazing and that some of the vaccinated animals become infected with local genotypes without causing overt disease.


2021 ◽  
Author(s):  
Sabrina E Racine-Brzostek ◽  
Jim Yee ◽  
Ashley Sukhu ◽  
Yuqing Qiu ◽  
Sophie Rand ◽  
...  

Longitudinal studies are needed to evaluate the SARS-CoV-2 mRNA vaccine antibody response under real-world conditions. This longitudinal study investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 subjects: comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19 [RecoVax]; 49 never been diagnosed [NaiveVax]) to 122 hospitalized unvaccinated (HospNoVax) and 160 outpatient unvaccinated (OutPtNoVax) COVID-19 patients. NaiveVax experienced a delay in generating SARS-CoV-2 total antibody levels (TAb) and neutralizing antibodies (SNAb) after the 1st vaccine dose (D1), but a rapid increase in antibody levels was observed after the 2nd dose (D2). However, these never reached the robust levels observed in RecoVax. In fact, NaiveVax TAb and SNAb levels decreased 4-weeks post-D2 (p=0.003;p<0.001). For the most part, RecoVax TAb persisted throughout this study, after reaching maximal levels 2-weeks post-D2; but SNAb decreased significantly ~6-months post-D1 (p=0.002). Although NaiveVax avidity lagged behind that of RecoVax for most of the follow-up periods, NaiveVax did reach similar avidity by ~6-months post-D1. These data suggest that one vaccine dose elicits maximal antibody response in RecoVax and may be sufficient. Also, despite decreasing levels in TAb and SNAb overtime, long-term avidity maybe a measure worth evaluating and possibly correlating to vaccine efficacy.


2021 ◽  
Vol 6 (61) ◽  
pp. eabe9950
Author(s):  
Shelley Klompus ◽  
Sigal Leviatan ◽  
Thomas Vogl ◽  
Roei D. Mazor ◽  
Iris N. Kalka ◽  
...  

The spillover of animal coronaviruses (aCoVs) to humans has caused SARS, MERS, and COVID-19. While antibody responses displaying cross-reactivity between SARS-CoV-2 and seasonal/common cold human coronaviruses (hCoVs) have been reported, potential cross-reactivity with aCoVs and the diagnostic implications are incompletely understood. Here, we probed for antibody binding against all seven hCoVs and 49 aCoVs represented as 12,924 peptides within a phage-displayed antigen library. Antibody repertoires of 269 recovered COVID-19 patients showed distinct changes compared to 260 unexposed pre-pandemic controls, not limited to binding of SARS-CoV-2 antigens but including binding to antigens from hCoVs and aCoVs with shared motifs to SARS-CoV-2. We isolated broadly reactive monoclonal antibodies from recovered COVID-19 patients that bind a shared motif of SARS-CoV-2, hCoV-OC43, hCoV-HKU1, and several aCoVs, demonstrating that interspecies cross-reactivity can be mediated by a single immunoglobulin. Employing antibody binding data against the entire CoV antigen library allowed accurate discrimination of recovered COVID-19 patients from unexposed individuals by machine learning. Leaving out SARS-CoV-2 antigens and relying solely on antibody binding to other hCoVs and aCoVs achieved equally accurate detection of SARS-CoV-2 infection. The ability to detect SARS-CoV-2 infection without knowledge of its unique antigens solely from cross-reactive antibody responses against other hCoVs and aCoVs suggests a potential diagnostic strategy for the early stage of future pandemics. Creating regularly updated antigen libraries representing the animal coronavirome can provide the basis for a serological assay already poised to identify infected individuals following a future zoonotic transmission event.


Sign in / Sign up

Export Citation Format

Share Document