How Significantly do Land Use and Land Cover (LULC) Changes Influence the Water Balance of a River Basin? A Study in Ganga River Basin, India

Author(s):  
N. Patidar ◽  
M. D. Behera
2017 ◽  
Author(s):  
Anoop Kumar Shukla ◽  
Chandra Shekhar Prasad Ojha ◽  
Ana Mijic ◽  
Wouter Buytaert ◽  
Shray Pathak ◽  
...  

Abstract. For sustainable development in a river basin it is crucial to understand population growth–Land Use/Land Cover (LULC) transformations–water quality nexus. This study investigates effects of demographic changes and LULC transformations on surface water quality of Upper Ganga River basin. River gets polluted in both rural and urban area. In rural area, pollution is because of agricultural practices mainly fertilizers, whereas in urban area it is mainly because of domestic and industrial wastes. First, population data was analyzed statistically to study demographic changes in the river basin. LULC change detection was done over the period of February/March 2001 to 2012 [Landsat 7 Enhanced Thematic Mapper (ETM+) data] using remote sensing and Geographical Information System (GIS) techniques. Further, water quality parameters viz. Biological Oxygen Demand (BOD), Dissolve Oxygen (DO) %, Flouride (F), Hardness CaCO3, pH, Total Coliform bacteria and Turbidity were studied in basin for pre-monsoon (May), monsoon (July) and Post-monsoon (November) seasons. Non-parametric Mann–Kendall rank test was done on monthly water quality data to study existing trends. Further, Overall Index of Pollution (OIP) developed specifically for Upper Ganga River basin was used for spatio-temporal water quality assessment. From the results, it was observed that population has increased in the river basin. Therefore, significant and characteristic LULC changes are observed in the study area. Water quality degradation has occurred in the river basin consequently the health status of the rivers have also changed from range of acceptable to slightly polluted in urban areas.


Land ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 136 ◽  
Author(s):  
Sekela Twisa ◽  
Manfred F. Buchroithner

Anthropogenic activities have substantially changed natural landscapes, especially in regions which are extremely affected by population growth and climate change such as East African countries. Understanding the patterns of land-use and land-cover (LULC) change is important for efficient environmental management, including effective water management practice. Using remote sensing techniques and geographic information systems (GIS), this study focused on changes in LULC patterns of the upstream and downstream Wami River Basin over 16 years. Multitemporal satellite imagery of the Landsat series was used to map LULC changes and was divided into three stages (2000–2006, 2006–2011, and 2011–2016). The results for the change-detection analysis and the change matrix table from 2000 to 2016 show the extent of LULC changes occurring in different LULC classes, while most of the grassland, bushland, and woodland were intensively changed to cultivated land both upstream and downstream. These changes indicate that the increase of cultivated land was the result of population growth, especially downstream, while the primary socioeconomic activity remains agriculture both upstream and downstream. In general, net gain and net loss were observed downstream, which indicate that it was more affected compared to upstream. Hence, proper management of the basin, including land use planning, is required to avoid resources-use conflict between upstream and downstream users.


2018 ◽  
Vol 50 (1) ◽  
pp. 244-261 ◽  
Author(s):  
Yunyun Li ◽  
Jianxia Chang ◽  
Lifeng Luo ◽  
Yimin Wang ◽  
Aijun Guo ◽  
...  

Abstract It is critically important to quantify the impact of land use land cover (LULC) changes on hydrology, and to understand the mechanism by which LULC changes affect the hydrological process in a river basin. To accurately simulate the hydrological process for a watershed like the Wei River Basin, where the surface characteristics are highly modified by human activities, we present an alternative approach of time-varying parameters in a hydrological model to reflect the changes in underlying land surfaces. The spatiotemporal impacts of LULC changes on watershed streamflow are quantified, and the mechanism that connects the changes in runoff generation and streamflow with LULC is explored. Results indicate the following: (1) time-varying parameters’ calibration is effective to ensure model validity when dealing with significant changes in underlying land surfaces; (2) LULC changes have significant impacts on the watershed streamflow, especially on the streamflow during the dry season; (3) the expansion of cropland is the major contributor to the reduction of surface water, causing decline in annual and dry seasonal streamflow. However, the shrinkage of woodland is the main driving force that decreases the soil water, thus contributing to a small increase in streamflow during the dry season.


CATENA ◽  
2019 ◽  
Vol 182 ◽  
pp. 104129 ◽  
Author(s):  
Alfred Awotwi ◽  
Geophrey Kwame Anornu ◽  
Jonathan Arthur Quaye-Ballard ◽  
Thompson Annor ◽  
Eric Kwabena Forkuo ◽  
...  

2020 ◽  
Vol 79 (19) ◽  
Author(s):  
Naeem Saddique ◽  
Talha Mahmood ◽  
Christian Bernhofer

Abstract Land use and land cover (LULC) change is one of the key driving elements responsible for altering the hydrology of a watershed. In this study, we investigated the spatio-temporal LULC changes between 2001 and 2018 and their impacts on the water balance of the Jhelum River Basin. The Soil and Water Assessment Tool (SWAT) was used to analyze the impacts on water yield (WY) and evapotranspiration (ET). The model was calibrated and validated with discharge data between 1995 and 2005 and then simulated with different land use. The increase was observed in forest, settlement and water areas during the study period. At the catchment scale, we found that afforestation has reduced the WY and surface runoff, while enhanced the ET. Moreover, this change was more pronounced at the sub-basin scale. Some sub-basins, especially in the northern part of the study area, exhibited an increase in WY due to an increase in the snow cover area. Similarly, extremes land use scenarios also showed significant impact on water balance components. The basin WY has decreased by 38 mm/year and ET has increased about 36 mm/year. The findings of this study could guide the watershed manager in the development of sustainable LULC planning and water resources management.


2020 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Tianfeng Wei ◽  
Donghui Shangguan ◽  
Xia Shen ◽  
Yongjian Ding ◽  
Shuhua Yi

The Kaxgar River Basin, a key section of the Tarim River Basin, is a typical ecologically fragile region that has undergone rapid changes to its spatial patterns over the preceding few decades. In particular, the expansion of salinized land has posed a severe threat to ecological restoration and economic development. This study monitored the rates and patterns of land use and land cover (LULC) changes in the plain area of Aketao County in the middle reaches of the Kaxgar River Basin. Five Landsat images (captured in 1990, 1998, 2002, 2013, and 2018) were divided into seven LULC types: built-up land, cultivated land, woodland and grassland, light-moderate salinized land, heavy salinized land, water areas, and bare land. Subsequently, their dynamic processes were analyzed. The results revealed that in 1990, the dominant LULCs were cultivated land, woodland and grassland, and bare land. Throughout the study period (from 1990 to 2018), the coverage of built-up land, cultivated land, bare land, water areas, and light-moderate salinized land increased; by contrast, that of the other LULC types decreased. The most marked LULC changes were the expansion of light-moderate salinized land (by 6.2% of the study area) and the shrinkage of woodland and grassland (by 9.4% of the study area). Almost all the analyzed LULC types underwent conversion to other types; such conversion occurred most frequently between 1998 and 2018. The conversions of woodland and grassland into cultivated land and light-moderate salinized land were the most notable phenomena. Another highly evident change was the conversion of heavy salinized land into bare land. These results revealed that the expansion of salinized land and the shrinkage of woodland and grassland in the study area were the most severe environmental changes. Therefore, ecological protection and salinization control are urgently required to enable local economic development while not exceeding the environmental carrying capacity and ensuring the safety of the “green corridor” in the lower reaches of the Kaxgar River Basin.


Sign in / Sign up

Export Citation Format

Share Document