A Mathematical Model of Marine Diesel Engine Speed Control System

2017 ◽  
Vol 99 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Rajendra Prasad Sinha ◽  
Rajoo Balaji
2012 ◽  
Vol 152-154 ◽  
pp. 1589-1594 ◽  
Author(s):  
Xiao Qun Shen ◽  
Yu Xiang Su

The traditional PID control effect is not ideal when the controlled object is nonlinear and contains variable parameters. In order to adapt marine diesel engines to variable working conditions, the fuzzy-PID control method was proposed to be used in the speed control system of marine diesel engine to realize online adjustment of PID parameters. The composition of marine diesel engine speed control system was introduced, and the design of fuzzy–PID controller was analyzed in detail. The fuzzy-PID diesel engine speed governor was simulated through MATLAB. The simulation results show that fuzzy-PID can improve the system dynamic performance, reduce system oscillation and improve the response speed. The results also show that the fuzzy-PID marine diesel engine speed governor has high anti-interference ability and strong robustness.


Author(s):  
G.V. GOGOLEV

The analysis of using cooling devices possibility on the basis of two–phase thermal siphons in «Cummins» marine diesel engine speed control systems is carried out.


2015 ◽  
Vol 799-800 ◽  
pp. 870-875
Author(s):  
Sunarsih ◽  
Izzuddin Nur ◽  
Agoes Priyanto

As the vessel operates in the rough open seas, a marine diesel engine simulator which engine rotation is controlled to transmit through propeller shaft is a new methodology for the self-propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion test simulation results in calm water [7] were compared to validate the present marine diesel engine simulator. The present simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbocharged marine diesel engine and was applied to a full scale target vessel. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.


2014 ◽  
Vol 666 ◽  
pp. 188-193
Author(s):  
Ye Ni Li ◽  
Shui Xuan Chen ◽  
Hu Xiu Xu

By researching the characteristics of hydraulic torque forklifts, developed a device which achieved inching function. It can detect position of the handle, using Delta PLC controlled stepper motor driven screw movement, to achieve the control of the engine speed, and modify the control parameters via touch-screen on-site commissioning, to achieve a truck at idle operation, through the manipulation of the handle can Smooth and stable pan, lift or tilt operation, making operation more convenient forklift and reduces the operator's labor intensity, a high value market applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuanqing Wang ◽  
Guichen Zhang ◽  
Zhubing Shi ◽  
Qi Wang ◽  
Juan Su ◽  
...  

In this paper, in order to handle the nonlinear system and the sophisticated disturbance in the marine engine, a finite-time convergence control method is proposed for the diesel engine rotating speed control. First, the mean value model is established for the diesel engine, which can represent response of engine fuel injection to engine speed. Then, in order to deal with parameter perturbation and load disturbance of the marine diesel engine, a finite-time convergence active disturbance rejection control (ADRC) is proposed. At the last, simulation experiments are conducted to verify the effectiveness of the proposed controller under the different load disturbances for the 7RT-Flex60C marine diesel engine. The simulation results demonstrate that the proposed control scheme has better control effect and stronger anti-interference ability than the linear ADRC.


2021 ◽  
Author(s):  
Marcin Zacharewicz ◽  
Tomasz Kniaziewicz

The paper presents the results of model and empirical tests conducted for a marine diesel engine fueled by a blend of n-butanol and diesel oil. The research were aimed at assessing the usefulness of the proprietary diesel engine model in conducting research on marine engines powered by alternative fuels to fossil fuels. The authors defined the measures of adequacy. On their basis, they assessed the adequacy of the mathematical model used. The analysis of the results of the conducted research showed that the developed mathematical model is sufficiently adequate. Therefore, both the mathematical model and the computer program based on it will be used in further work on supplying marine engines with mixtures of diesel oil and biocomponents.


Sign in / Sign up

Export Citation Format

Share Document