A Clinical Prediction Model to Determine Probability of Response to Certolizumab Pegol for Crohn’s Disease

BioDrugs ◽  
2021 ◽  
Author(s):  
Pavine L. C. Lefevre ◽  
Parambir S. Dulai ◽  
Zhongya Wang ◽  
Leonardo Guizzetti ◽  
Brian G. Feagan ◽  
...  
2019 ◽  
Vol 114 (1) ◽  
pp. S373-S373 ◽  
Author(s):  
Parambir Dulai ◽  
Leonard Guizzetti ◽  
Tony Ma ◽  
Vipul Jairath ◽  
Siddharth Singh ◽  
...  

2021 ◽  
Author(s):  
Richard D. Riley ◽  
Thomas P. A. Debray ◽  
Gary S. Collins ◽  
Lucinda Archer ◽  
Joie Ensor ◽  
...  

Gerontology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Yang Shen ◽  
Xianchen Li ◽  
Junyan Yao

Perioperative neurocognitive disorders (PNDs) refer to cognitive decline identified in the preoperative or postoperative period. It has been reported that the incidence of postoperative neurocognitive impairment after noncardiac surgery in patients older than 65 at 1 week was 25.8∼41.4%, and at 3 months 9.9∼12.7%. PNDs will last months or even develop to permanent dementia, leading to prolonged hospital stays, reduced quality of life, and increased mortality within 1 year. Despite the high incidence and poor prognosis of PNDs in the aged population, no effective clinical prediction model has been established to predict postoperative cognitive decline preoperatively. To develop a clinical prediction model for postoperative neurocognitive dysfunction, a prospective observational study (Clinical trial registration number: ChiCTR2000036304) will be performed in the Shanghai General Hospital during January 2021 to October 2022. A sample size of 675 patients aged &#x3e;65 years old, male or female, and scheduled for elective major noncardiac surgery will be recruited. A battery of neuropsychological tests will be used to test the cognitive function of patients at 1 week, 1 month, and 3 months postoperatively. We will evaluate the associations of PNDs with a bunch of candidate predictors including general characteristics of patients, blood biomarkers, indices associated with anesthesia and surgery, retinal nerve-fiber layer thickness, and frailty index to develop the clinical prediction model by using multiple logistic regression analysis and least absolute shrinkage and the selection operator (LASSO) method. The <i>k</i>-fold cross-validation method will be utilized to validate the clinical prediction model. In conclusion, this study was aimed to develop a clinical prediction model for postoperative cognitive dysfunction of old patients. It is anticipated that the knowledge gained from this study will facilitate clinical decision-making for anesthetists and surgeons managing the aged patients undergoing noncardiac surgery.


2008 ◽  
Vol 134 (4) ◽  
pp. A-489-A-490 ◽  
Author(s):  
Stephen B. Hanauer ◽  
Stefan Schreiber ◽  
Ole O. Thomsen ◽  
Gary R. Lichtenstein ◽  
Ralph Bloomfield ◽  
...  

BMJ Open ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. e041093
Author(s):  
Todd Adam Florin ◽  
Daniel Joseph Tancredi ◽  
Lilliam Ambroggio ◽  
Franz E Babl ◽  
Stuart R Dalziel ◽  
...  

IntroductionPneumonia is a frequent and costly cause of emergency department (ED) visits and hospitalisations in children. There are no evidence-based, validated tools to assist physicians in management and disposition decisions for children presenting to the ED with community-acquired pneumonia (CAP). The objective of this study is to develop a clinical prediction model to accurately stratify children with CAP who are at risk for low, moderate and severe disease across a global network of EDs.Methods and analysisThis study is a prospective cohort study enrolling up to 4700 children with CAP at EDs at ~80 member sites of the Pediatric Emergency Research Networks (PERN; https://pern-global.com/). We will include children aged 3 months to <14 years with a clinical diagnosis of CAP. We will exclude children with hospital admissions within 7 days prior to the study visit, hospital-acquired pneumonias or chronic complex conditions. Clinical, laboratory and imaging data from the ED visit and hospitalisations within 7 days will be collected. A follow-up telephone or text survey will be completed 7–14 days after the visit. The primary outcome is a three-tier composite of disease severity. Ordinal logistic regression, assuming a partial proportional odds specification, and recursive partitioning will be used to develop the risk stratification models.Ethics and disseminationThis study will result in a clinical prediction model to accurately identify risk of severe disease on presentation to the ED. Ethics approval was obtained for all sites included in the study. Cincinnati Children’s Hospital Institutional Review Board (IRB) serves as the central IRB for most US sites. Informed consent will be obtained from all participants. Results will be disseminated through international conferences and peer-reviewed publications. This study overcomes limitations of prior pneumonia severity scores by allowing for broad generalisability of findings, which can be actively implemented after model development and validation.


2007 ◽  
Vol 357 (3) ◽  
pp. 228-238 ◽  
Author(s):  
William J. Sandborn ◽  
Brian G. Feagan ◽  
Simeon Stoinov ◽  
Pieter J. Honiball ◽  
Paul Rutgeerts ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e20904 ◽  
Author(s):  
Thomas R. O'Brien ◽  
James E. Everhart ◽  
Timothy R. Morgan ◽  
Anna S. Lok ◽  
Raymond T. Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document