scholarly journals Inertia response from full-power converter-based permanent magnet wind generators

2013 ◽  
Vol 1 (1) ◽  
pp. 26-33 ◽  
Author(s):  
John Licari ◽  
Janaka Ekanayake ◽  
Ian Moore
2021 ◽  
pp. 0309524X2110227
Author(s):  
Mohamed Metwally Mahmoud ◽  
Mohamed Khalid Ratib ◽  
Mohamed M Aly ◽  
Abdel-Moamen M Abdel-Rahim

Scholars are motivated to work in the field of renewable energy systems (RESs) especially on grid-connected wind generators because of the exciting and noticeable developments going on in this area. This progress is utilized to obtain the maximal, efficient, and stable electric power from the RESs and integrating it into existing systems to improve its efficiency, stability, reliability, and overall power quality. Recently, permanent magnet synchronous generators (PMSGs) have become the main pillar of advanced wind systems thanks to their fascinating pluses over other types of wind generators. This paper presents the up-to-date trends in converter topologies, control approaches, maximal power production methods, and grid integration issues for PMSG-based wind systems. The performed statistical analyses assure the dominance of the two-level back-to-back converter among the studied power converter topologies, field-oriented control method for the machine side converter, voltage oriented control method for the grid side converter control, perturb and observe algorithm amongst the studied maximum power point techniques, and fault ride-through capability out of grid integration issues. Further, recent general trends in technological advancements for PMSG wind system components are illustrated as a pie chart in terms of percentage figures. It is expected that the researchers working in this field would benefit from this article in terms of the presented state-of-the-art statistical analyses and its related literature given in this study.


2013 ◽  
Vol 448-453 ◽  
pp. 1865-1870
Author(s):  
Xiang Yu Lv ◽  
Bo Gao ◽  
Guo Wei Cai ◽  
De Xin Li

With an increasing amount of wind energy installed, the behavior of wind turbines during grid disturbances becomes more and more important. This paper introduces the basic structures of doubly-fed wind turbines and direct-drive permanent magnet synchronous wind turbines and analyses the capability of low voltage ride through (LVRT) of the wind turbines. Finally this paper elaborates the principle and the procedures of the LVRT tests. The results of the tests show that: Doubly-fed wind turbines and direct-drive permanent magnet synchronous wind turbines are equipped with LVRT capability. The turbines are able to operate normally without disconnection and provide reactive power to support grid restoration during the dip. The direct-drive permanent magnet synchronous wind turbines are superior to the doubly-fed wind turbines on LVRT since a full-power converter is used.


2020 ◽  
Vol 12 (24) ◽  
pp. 10464
Author(s):  
Amirhossein Rajaei ◽  
Mahdi Shahparasti ◽  
Ali Nabinejad ◽  
Mehdi Savaghebi

In this paper, a new modified structure of a DC/DC T-source converter is proposed. Since the proposed converter provides high voltage gain, it is suitable for photovoltaic integration into uninterruptible power supply (UPS) systems. The proposed structure employs partial power processing technique to increase the output voltage as well as efficiency without requiring new hardware. Partial power converters (PPCs) process only a fraction of flowing power while the remaining power directly flows through output. This generally causes an improvement in efficiency and output voltage. A total of two structures are presented: conventional partial power T-source converters and improved partial power T-source converters. The key advantage of the improved partial power converter is a higher voltage gain. Furthermore, it reduces the voltage and the current stresses on switches and diodes. The steady-state operation principles are described for both converters and the governed rules and equations are derived. The PPCs and full power converter are compared in terms of efficiency, voltage gain, voltage stress, and current stress of converter elements. The converter performance is evaluated through experimental and simulation studies. The presented results show good consistency with the theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Chih-Hong Lin

The novel modified Elman neural network (NN) controlled permanent magnet synchronous generator (PMSG) system, which is directly driven by a permanent magnet synchronous motor (PMSM) based on wind turbine emulator, is proposed to control output of rectifier (AC/DC power converter) and inverter (DC/AC power converter) in this study. First, a closed loop PMSM drive control based on wind turbine emulator is designed to generate power for the PMSG system according to different wind speeds. Then, the rotor speed of the PMSG, the voltage, and current of the power converter are detected simultaneously to yield better power output of the converter. Because the PMSG system is the nonlinear and time-varying system, two sets online trained modified Elman NN controllers are developed for the tracking controllers of DC bus power and AC power to improve output performance of rectifier and inverter. Finally, experimental results are verified to show the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document