scholarly journals Code-based encryption techniques with distributed cluster head and energy consumption routing protocol

Author(s):  
M. Jalasri ◽  
L. Lakshmanan

AbstractFog computing and the Internet of Things (IoT) played a crucial role in storing data in the third-party server. Fog computing provides various resources to collect data by managing data security. However, intermediate attacks and data sharing create enormous security challenges like data privacy, confidentiality, authentication, and integrity issues. Various researchers introduce several cryptographic techniques; security is still significant while sharing data in the distributed environment. Therefore, in this paper, Code-Based Encryption with the Energy Consumption Routing Protocol (CBE-ECR) has been proposed for managing data security and data transmission protocols using keyed-hash message authentication. Initially, the data have been analyzed, and the distributed cluster head is selected, and the stochastically distributed energy clustering protocol is utilized for making the data transmission. Code-driven cryptography relies on the severity of code theory issues such as disorder demodulation and vibration required to learn equivalence. These crypto-systems are based on error codes to build a single-way function. The encryption technique minimizes intermediate attacks, and the data have protected all means of transmission. In addition to data security management, the introduced CBE-ECR reduces unauthorized access and manages the network lifetime successfully, leading to the effective data management of 96.17% and less energy consumption of 21.11% than other popular methods.The effectiveness of the system is compared to the traditional clustering techniques.

2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


2016 ◽  
Vol 13 (10) ◽  
pp. 7184-7188
Author(s):  
Hong Dai ◽  
Heng Hui Ge

For LEACH routing protocol in the clustering routing protocol of wireless sensors, the network energy consumption inequality, node energy inequality and deficiency of cluster head election, this paper proposes the method of improving the cluster head election through node residual energy and the distance between the nodes. To balance the network energy consumption, improves the algorithm of stable data transmission phase. The simulation experiment results prove the fact that the improved algorithm is better than the original algorithm through comparing the node mortality, receiving data amount of base station and residual energy of the node.


Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime.


Author(s):  
Ademola Philip Abidoye ◽  
Boniface Kabaso

AbstractWireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the twenty-first century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize the energy consumption of sensor nodes to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called energy-efficient hierarchical routing protocol for wireless sensor networks based on fog computing. Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of things applications. In addition, we propose an improved ant colony optimization algorithm that can be used to construct an optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses, and extends the network lifetime. We are aware that in WSNs, the certainty of the sensed data collected by a sensor node can vary due to many reasons such as environmental factors, drained energy, and hardware failures.


Author(s):  
Suzan Shukry

AbstractStable routing and energy conservation over a wireless sensor network (WSN) is a major issue in Internet of Things applications. The network lifetime can be increased when studying this issue with interest. Data transmission is a dominant factor in IoT networks for communication overhead and energy consumption. A proposed efficient node stable routing ($$ENSR$$ ENSR ) protocol is introduced to guarantee the stability of transmission data between the source and destination nodes, in a dynamic WSN conditions. $$ENSR$$ ENSR minimizes energy consumption and selects more stable nodes for packets forwarding. Stability becomes the most important factor that qualifies the node's centrality. A node’s stability is characterized by residual energy, link quality, and number of hops needed to reach the destination from the node. To calculate node's stability, an enhanced centrality concept, known as stable betweenness centrality ($$SBC$$ SBC ) is introduced. In $$ENSR$$ ENSR , at first, some nodes will be selected as the stable forwarding nodes, usually with maximum $$SBC$$ SBC between their neighbors within a limited communication radio range of a particular region. Furthermore, each stable forwarding node then broadcasts its identity, including $$SBC$$ SBC , to the source node separately. The source node can compute a stable path to forward packets to the corresponding stable forwarding node, based on a proper designed stable path routing metric ($$SPRM$$ SPRM ). Then, the stable forwarding node will behave as a new source node and start another stable path routing process until the packets are forwarded and reached to the destination node. In addition, the change of stable nodes over time balances and conserves node energy consumption, thereby mitigating “hot spots”. The proposed routing protocol is validated through simulation. The numerical results show that the proposed protocol outperforms the existing algorithms, global and local reliability-based routing ($$GLRR$$ GLRR ) and reliable energy-aware routing protocol $$(RER)$$ ( R E R ) , in terms of network efficiency and reliability.


Author(s):  
Fuseini Jibreel ◽  
Emmanuel Tuyishimire ◽  
I M Daabo

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from the hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, less data transmission to the Base station (BS). In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol ( HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. Results show that the proposed routing scheme outperforms two existing ones.


2021 ◽  
Vol 12 (2) ◽  
pp. 74-93
Author(s):  
Ravi Kumar Poluru ◽  
R. Lokeshkumar

Boosting data transmission rate in IoT with minimized energy is the research issue under consideration in recent days. The main motive of this paper is to transmit the data in the shortest paths to decrease energy consumption and increase throughput in the IoT network. Thus, in this paper, the authors consider delay, traffic rate, and density in designing a multi-objective energy-efficient routing protocol to reduce energy consumption via the shortest paths. First, the authors propose a cluster head picking approach that elects optimal CH. It increases the effective usage of nodes energy and eventually results in prolonged network lifetime with enhanced throughput. The data transmission rate is posed as a fitness function in the multi-objective ant lion optimizer algorithm (MOALOA). The performance of the proposed algorithm is investigated using MATLAB and achieved high convergence, extended lifetime, as well as throughput when compared to representative approaches like E-LEACH, mACO, MFO-ALO, and ALOC.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Amine Rais ◽  
Khalid Bouragba ◽  
Mohammed Ouzzif

Energy is the most valuable resource in wireless sensor networks; this resource is limited and much in demand during routing and communication between sensor nodes. Hierarchy structuring of the network into clusters allows reducing the energy consumption by using small distance transmissions within clusters in a multihop manner. In this article, we choose to use a hybrid routing protocol named Efficient Honeycomb Clustering Algorithm (EHCA), which is at the same time hierarchical and geographical protocol by using honeycomb clustering. This kind of clustering guarantees the balancing of the energy consumption through changing in each round the location of the cluster head, which is in a given vertex of the honeycomb cluster. The combination of geographical and hierarchical routing with the use of honeycomb clustering has proved its efficiency; the performances of our protocol outperform the existing protocols in terms of the number of nodes alive, the latency of data delivery, and the percentage of successful data delivery to the sinks. The simulations testify the superiority of our protocol against the existing geographical and hierarchical protocols.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiang Ji ◽  
Huiqun Yu ◽  
Guisheng Fan ◽  
Huaiying Sun ◽  
Liqiong Chen

Vehicular ad hoc network (VANET) is an emerging technology for the future intelligent transportation systems (ITSs). The current researches are intensely focusing on the problems of routing protocol reliability and scalability across the urban VANETs. Vehicle clustering is testified to be a promising approach to improve routing reliability and scalability by grouping vehicles together to serve as the foundation for ITS applications. However, some prominent characteristics, like high mobility and uneven spatial distribution of vehicles, may affect the clustering performance. Therefore, how to establish and maintain stable clusters has become a challenging problem in VANETs. This paper proposes a link reliability-based clustering algorithm (LRCA) to provide efficient and reliable data transmission in VANETs. Before clustering, a novel link lifetime-based (LLT-based) neighbor sampling strategy is put forward to filter out the redundant unstable neighbors. The proposed clustering scheme mainly composes of three parts: cluster head selection, cluster formation, and cluster maintenance. Furthermore, we propose a routing protocol of LRCA to serve the infotainment applications in VANET. To make routing decisions appropriate, we nominate special nodes at intersections to evaluate the network condition by assigning weights to the road segments. Routes with the lowest weights are then selected as the optimal data forwarding paths. We evaluate clustering stability and routing performance of the proposed approach by comparing with some existing schemes. The extensive simulation results show that our approach outperforms in both cluster stability and data transmission.


Sign in / Sign up

Export Citation Format

Share Document