Effects of plant growth regulators on in vitro morphogenic response in Oldenlandia herbacea (L.) Roxb.

2020 ◽  
Vol 33 (4) ◽  
pp. 800-804
Author(s):  
J. Revathi ◽  
M. Manokari ◽  
S. Priyadharshini ◽  
Mahipal S. Shekhawat
2019 ◽  
Author(s):  
Tasiu Isah

Abstract Background: In vitro morphogenic response of mature seed embryo-derived callus cultures of Chonemorpha fragrans was studied using solid and liquid Murashige and Skoog medium amended with cytokinins or their combinations with naphthalene acetic acid at 0.5 mg L-1.Results: The tested plant growth regulators combination and concentrations could not stimulate organogenesis after three subcultivations of the callus cultures on the same PGRs-amended solid medium, and when cultivated in the liquid but, formation of morphogenic callus was observed. Evaluation of biomass and camptothecin production showed that the PGRs influenced biomass and CPT yield of the callus cultures. The alkaloid yield of various explants of 3–4 weeks old axenic seedlings was higher in roots (0.019 % CPT) followed by mature seed embryos (0.0053 %), cotyledons (0.0039 %), hypocotyls (0.0024 %) and leaves (0.0017 %). There was no significant difference in yield of CPT from callus induced from the various explants. Camptothecin yield of morphogenic callus cultures cultivated in liquid medium was lower than that of solid due to extracellular leaching effect of the alkaloid. Amount of synthesized CPT in the callus cultures also varied with PGR type and concentration amended in the cultivation medium, and showed association with biomass production.Conclusion: Results of the present study suggest that callus cultures offer alternative tissue source for in vitro CPT yield enhancement through biotechnological approaches, with application in the large-scale production of the alkaloid to conserve the ever decimated natural population of the medicinal woody climber for CPT.


2021 ◽  
Vol 13 (4) ◽  
pp. 11052
Author(s):  
Tasiu ISAH ◽  
Shruti SINGH

In vitro morphogenic response of mature seed embryo-derived callus cultures of Chonemorpha fragrans was studied using solid and liquid Murashige and Skoog medium amended with cytokinins or their combinations with naphthalene acetic acid at 0.5 mg L-1. The plant growth regulators (PGRs) combination and concentrations tested could not stimulate organogenesis after three subcultivations of the callus cultures on the same PGRs-amended solid medium and when cultivated in the liquid but, formation of morphogenic callus was observed. Evaluation of biomass and camptothecin production showed that the PGRs influenced biomass and CPT yield of the callus cultures. The alkaloid yield of various explants of 3-4 weeks old axenic seedlings was higher in roots (0.019% CPT) followed by mature seed embryos (0.0053%), cotyledons (0.0039%), hypocotyls (0.0024%) and leaves (0.0017%), and no significant difference was observed in yield of CPT from callus induced from the various explants. Camptothecin yield of morphogenic callus cultures cultivated in liquid medium was lower than that of solid due to extracellular leaching effect of the alkaloid. Amount of synthesized CPT in the callus cultures also varied with PGR type and concentration amended in the cultivation medium, and was association with biomass production. Results of the present study suggest that callus cultures offer alternative tissue source for in vitro CPT yield enhancement through biotechnological approaches, with application in the large-scale production of the alkaloid to conserve the ever-decimated natural population of the medicinal woody climber for CPT.


2019 ◽  
Author(s):  
Tasiu Isah ◽  
Shahid Umar

Abstract Background: In vitro morphogenic response of mature seed embryo-induced callus cultures of Chonemorpha fragrans was studied using solid and liquid Murashige and Skoog medium amended with cytokinins or their combinations with naphthalene acetic acid at 0.5 mg L-1. Results: The tested plant growth regulators combination and concentrations did not stimulate organogenesis after three subcultivations of the callus cultures on the same PGRs-amended solid medium, and when cultivated in the liquid but, formation of morphogenic callus was observed. Evaluation of biomass and camptothecin production showed that the PGRs influenced biomass and CPT yield of the callus cultures. The alkaloid yield of various explants of 3–4 weeks old axenic seedlings was higher in roots (0.019 % CPT) followed by mature seed embryos (0.0053 %), cotyledons (0.0039 %), hypocotyls (0.0024 %) and leaves (0.0017 %). There was no significant difference in the yield of CPT from callus induced from the various explants. Camptothecin yield of morphogenic callus cultures cultivated in liquid medium was lower than that of solid due to extracellular leaching effect of the alkaloid. Amount of synthesized CPT in the callus cultures also varied with the PGR type and concentration amended in the cultivation medium, and showed association with biomass production. Conclusion: Results of the present study suggest that callus cultures offer alternative tissue source for the in vitro CPT yield enhancement through biotechnological approaches, with application in the large-scale production of the alkaloid to conserve the ever decimated natural population of this medicinal woody climber for the alkaloid.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


2011 ◽  
Vol 3 (3) ◽  
pp. 97-100
Author(s):  
Naimeh SHARIFMOGHADAM ◽  
Abbas SAFARNEJAD ◽  
Sayed Mohammad TABATABAEI

The Almond (Amygdalus communis) is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid) + 1 mg/l BA (Benzyl Adenine). Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid).


Sign in / Sign up

Export Citation Format

Share Document