Substituting Manure with Rice Husk to Improve Phosphorus Adsorption and Immobilization in High Phosphorus Accumulated Greenhouse Vegetable Soil

Author(s):  
Chao Fei ◽  
Shirong Zhang ◽  
Jifeng Li ◽  
Lin Zhang ◽  
Bin Liang ◽  
...  
Author(s):  
Xinli Wang ◽  
Yun Wang ◽  
Fei Zhu ◽  
Chi Zhang ◽  
Peiyao Wang ◽  
...  

Land-use types with different disturbance gradients show many variations in soil properties, but the effects of different land-use types on soil nitrifying communities and their ecological implications remain poorly understood. Using 13CO2-DNA-based stable isotope probing (DNA-SIP), we examined the relative importance and active community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (NOB) in soils under three land-use types, forest, cropland, and greenhouse vegetable soil, representing three interference gradients. Soil net nitrification rate was in the order forest soil > cropland soil > greenhouse vegetable soil. DNA-SIP showed that active AOA outcompeted AOB in the forest soil, whereas AOB outperformed AOA in the cropland and greenhouse vegetable soils. Cropland soil was richer in NOB than in AOA and AOB. Phylogenetic analysis revealed that ammonia oxidation in the forest soil was predominantly catalyzed by the AOA Nitrosocosmicus franklandus cluster within the group 1.1b lineage. The 13C-labeled AOB were overwhelmingly dominated by Nitrosospira cluster 3 in the cropland soil. The active AOB Nitrosococcus watsonii lineage was observed in the greenhouse vegetable soil, and it played an important role in nitrification. Active NOB communities were closely affiliated with Nitrospira in the forest and cropland soils, and with Nitrolancea and Nitrococcus in the greenhouse vegetable soil. Canonical correlation analysis showed that soil pH and organic matter content significantly affected the active nitrifier community composition. These results suggest that land-use types with different disturbance gradients alter the distribution of active nitrifier communities by affecting soil physicochemical properties. IMPORTANCE Nitrification plays an important role in the soil N cycle, and land-use management has a profound effect on soil nitrifiers. It is unclear how different gradients of land use affect active ammonia-oxidizing archaea and bacteria and nitrite-oxidizing bacteria. Our research is significant because we determined the response of nitrifiers to human disturbance, which will greatly improve our understanding of the niche of nitrifiers and the differences in their physiology.


2019 ◽  
Vol 116 (1) ◽  
pp. 116
Author(s):  
Xuejiao Zhou ◽  
Yongli Chen ◽  
Wentang Xia ◽  
Jianguo Yin ◽  
Xiaoli Yuan

The present study aims to develop a new potentially low-cost and efficient approach to removing soluble inorganic phosphorus from acid leaching wastewater. This wastewater was of high acidity and high phosphorus content. Low-grade oolitic hematite with high phosphorus (LGOHWHP) was chosen as an economic adsorbent and was also used to adjust the acidity of the solution. The adsorption isotherms, adsorption thermodynamics, and effect of various parameters such as pH value, contact time, temperature and adsorbent dosage on the phosphorus removal from wastewater were investigated. The results showed that pH value and adsorbent dosage have a significant impact on the phosphorus removal. The phosphorus adsorption results fitted very well to Langmuir and Freundlich adsorption isotherm models, and the adsorption process was an endothermic process. At the optimum parameters pH 5.5, reaction temperature of 302 K with 20 g L−1 LGOHWHP, the phosphorus removal percentage of about 95% and the phosphorus concentration in the wastewater of about 0.27 mg L−1 are achieved after 60 min. The results indicate that the phosphorus concentration in wastewater after dephosphorization by the LGOHWHP completely meets the requirements of the national wastewater discharge standard in China. This research provides an efficient and environmentally friendly technology to remove phosphorus from wastewater.


2014 ◽  
Vol 45 (10) ◽  
pp. 1385-1398 ◽  
Author(s):  
R. K. Gupta ◽  
Amandeep Singh ◽  
Yadvinder Singh ◽  
H. S. Thind ◽  
Bijay Singh ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 267 ◽  
pp. 129248
Author(s):  
Song Fang ◽  
Hai Nan ◽  
Dongqing Lv ◽  
Xiangwei You ◽  
Jianqiu Chen ◽  
...  

Author(s):  
Yijie Shi ◽  
Meiyan Wang ◽  
Tongyan Yao ◽  
Lingying Xu ◽  
Xuezheng Shi

Objective of investigation: Land use conversion strongly alters soil structure and substantially affects soil organic carbon (SOC) sequestration. Changing from an anaerobic paddy field (PF) to a dry land easily causes SOC loss due to stimulation of C decomposition. However, no evidence of SOC loss from PF to intensive vegetable cultivation has been certainly presented. Experimental material: This study was conducted on the long-term cultivated open-field vegetable (OFV) and greenhouse vegetable (GHV) planting area converted from old PF in China. Undisturbed soil cores, natural structured soil, and disturbed soil from top soil layers were using for further analyses. Methods of investigation: To comprehensively investigate SOC and soil structure change in the land use conversion of PF to OFV and PF to GHV, we used 13C-CPMAS NMR spectroscopy to classify the SOC fractions. The soil macropores (> 50 μm) was valued by X-ray computed tomography, and soil aggregates distribution was determined by wet sieving method. Data collection: Data were obtained from the above-mentioned measurements and statistically analyzed in R. Results: The result showed that the SOC stock increased 1-fold from PF to GHV. SOC stability increased with recalcitrant C (aromatic-C and carbonyl-C) raised by 21 %–27 % in GHV bulk soil. Both macropores and macroaggregates (> 250 μm) increased in GHV, accompanied by an accumulation of recalcitrant C in large macroaggregates. Conclusions: we confirmed the expanded GHV cultivation sequestered more belowground SOC than PF, associated with the amplified physical protection by enhancing soil aggregation and by redistributing of soil macropores.


Sign in / Sign up

Export Citation Format

Share Document