Selective cell-surface expression of dipeptidyl peptidase IV with mutations at the active site sequence

1992 ◽  
Vol 185 (2) ◽  
pp. 776-784 ◽  
Author(s):  
Toshiyuki Fujiwara ◽  
Emiko Tsuji ◽  
Yoshio Misumi ◽  
Noboru Takami ◽  
Yukio Ikehara
1995 ◽  
Vol 108 (5) ◽  
pp. 2109-2121
Author(s):  
L. Baricault ◽  
J.A. Fransen ◽  
M. Garcia ◽  
C. Sapin ◽  
P. Codogno ◽  
...  

The enterocytic differentiation of Caco-2 cells, a human colon adenocarcinoma cell line, is accompanied by the transcriptionally regulated expression of a subset of proteins and their correct sorting towards the cell surface. In the present work we have explored the possibility that post-translational events may interfere with this process by investigating the short term effects of a potent adenylyl cyclase activator, forskolin, on cell surface expression of dipeptidyl peptidase IV. Previous works have shown that this protein is targeted towards the apical domain through either a direct or an indirect route. Domain specific biochemical experiments demonstrate that cell surface expression of neosynthesized dipeptidyl peptidase IV rapidly decreases after a 1 hour forskolin treatment. Both initial basolateral and apical dipeptidyl peptidase IV membrane delivery were altered by forskolin treatment. Decrease of dipeptidyl peptidase IV cell surface expression was not restricted to this protein, since membrane expression of ‘525’ antigen, a basolateral protein and of sucrase-isomaltase, an apically targeted hydrolase, which unlike dipeptidyl peptidase IV mainly follows a direct route to the brush border membrane, also decreases. In addition endocytosis of proteins from the apical and from the basolateral domain was essentially unchanged, suggesting that forskolin's target may be located on the exocytic pathway. Confocal laser scanning microscopy and immuno-electron microscopy studies demonstrate that, within 5 minutes of forskolin treatment, the cell surface proteins studied accumulate in intracellular vesicles which were co-labeled with a polyclonal antibody raised against Lamp-1, a lysosomal membrane marker. Electron microscopy studies show that these vesicles display an autophagic-like morphology. Finally, biochemical experiments indicate that dibutyryl cAMP does not mimick the forskolin effect, thus suggesting that it is a cAMP-independent phenomenon.


2020 ◽  
Author(s):  
Florent Colomb ◽  
Leila B. Giron ◽  
Leticia Kuri Cervantes ◽  
Tongcui Ma ◽  
Samson Adeniji ◽  
...  

Author(s):  
Mona Aslani ◽  
Arman Ahmadzadeh ◽  
Zahra Aghazadeh ◽  
Majid Zaki-Dizaji ◽  
Laleh Sharifi ◽  
...  

Background: : Based on the encouraging results of phase III clinical trial of β-D-mannuronic acid (M2000) (as a new anti-inflammatory drug) in patients with RA, in this study, we aimed to evaluate the effects of this drug on the expression of chemokines and their receptors in PBMCs of RA patients. Methods:: PBMCs of RA patients and healthy controls were separated and the patients' cells were treated with low, moderate and high doses (5, 25 and 50 μg/mL) of M2000 and optimum dose (1 μg/mL) of diclofenac, as a control in RPMI-1640 medium. Real-time PCR was used for evaluating the mRNA expression of CXCR3, CXCR4, CCR2, CCR5 and CCL2/MCP-1. Cell surface expression of CCR2 was investigated using flow cytometry. Results:: CCR5 mRNA expression reduced significantly, after treatment of the patients' cells with all three doses of M2000 and optimum dose of diclofenac. CXCR3 mRNA expression down-regulated significantly followed by treatment of these cells with moderate and high doses of M2000 and optimum dose of diclofenac. CXCR4 mRNA expression declined significantly after treatment of these cells with moderate and high doses of M2000. CCL2 mRNA expression significantly reduced only followed by treatment of these cells with high dose of M2000, whereas, mRNA and cell surface expressions of CCR2 diminished significantly followed by treatment of these cells with high dose of M2000 and optimum dose of diclofenac. Conclusion:: According to our results, M2000 through the down-regulation of chemokines and their receptors may restrict the infiltration of immune cells into the synovium.


Sign in / Sign up

Export Citation Format

Share Document