Electrically-evoked release of norepinephrine in the rat cerebellum: an in vivo electrochemical and electrophysiological study

1991 ◽  
Vol 558 (2) ◽  
pp. 305-311 ◽  
Author(s):  
Paula Bickford-Wimer ◽  
Kevin Pang ◽  
Greg M. Rose ◽  
Greg A. Gerhardt
2016 ◽  
Vol 38 (2) ◽  
pp. 487-501 ◽  
Author(s):  
Stella Petric ◽  
Sofia Klein ◽  
Lisa Dannenberg ◽  
Tillman Lahres ◽  
Lukas Clasen ◽  
...  

Background/Aims: Pannexin-1 (Panx1) is an ATP release channel that is ubiquitously expressed and coupled to several ligand-gated receptors. In isolated cardiac myocytes, Panx1 forms large conductance channels that can be activated by Ca2+ release from the sarcoplasmic reticulum. Here we characterized the electrophysiological function of these channels in the heart in vivo, taking recourse to mice with Panx1 ablation. Methods: Cardiac phenotyping of Panx1 knock-out mice (Panx1-/-) was performed by employing a molecular, cellular and functional approach, including echocardiography, surface and telemetric ECG recordings with QT analysis, physical stress testing and quantification of heart rate variability. In addition, an in vivo electrophysiological study entailed programmed electrical stimulation using an intracardiac octapolar catheter. Results: Panx1 deficiency results in a higher incidence of AV-block, delayed ventricular depolarisation, significant prolongation of QT- and rate corrected QT-interval and a higher incidence of atrial fibrillation after intraatrial burst stimulation. Conclusion: Panx1 seems to play an important role in murine cardiac electrophysiology and warrants further consideration in the context of hereditary forms of atrial fibrillation.


2016 ◽  
Vol 4 (2) ◽  
pp. 216-220 ◽  
Author(s):  
Dario Moneghini ◽  
Alessandro Lipari ◽  
Guido Missale ◽  
Luigi Minelli ◽  
Gianpaolo Cengia ◽  
...  

2014 ◽  
Vol 21 (7) ◽  
pp. 905-915 ◽  
Author(s):  
Chenyu Wang ◽  
David Paling ◽  
Luke Chen ◽  
Sean N Hatton ◽  
Jim Lagopoulos ◽  
...  

Objective: The objective of this paper is to inform the pathophysiology of medial longitudinal fasciculus (MLF) axonal dysfunction in patients with internuclear ophthalmoplegia (INO) due to multiple sclerosis (MS), and develop a composite structural-functional biomarker of axonal and myelin integrity in this tract. Methods: Eighteen patients with definite MS and clinically suspected INO underwent electrical vestibular stimulation and search-coil eye movement recording. Components of the electrically evoked vestibulo-ocular reflex (eVOR) were analyzed to probe the latency and fidelity of MLF axonal conduction. The MLF and T2-visible brainstem lesions were defined by high-resolution MRI. White matter integrity was determined by diffusion-weighted imaging metrics. Results: eVOR onset latency was positively correlated with MLF lesion length (left: r = 0.66, p = 0.004; right: r = 0.75, p = 0.001). The mean conduction velocity (±SD) within MLF lesions was estimated at 2.72 (±0.87) m/s. eVOR onset latency correlated with normalized axial diffusivity ( r = 0.66, p < 0.001) and fractional anisotropy ( r = 0.44, p = 0.02) after exclusion of cases with ipsilateral vestibular root entry zone lesions. Conclusions: Axonal conduction velocity through lesions involving the MLF was reduced below levels predicted for natively myelinated and remyelinated axons. Composite in vivo biomarkers enable delineation of axonal from myelin processes and may provide a crucial role in assessing efficacy of novel reparative therapies in MS.


2000 ◽  
Vol 84 (6) ◽  
pp. 2746-2757 ◽  
Author(s):  
Min Zhou ◽  
Harold K. Kimelberg

Whether astrocytes predominantly express ohmic K+ channels in vivo, and how expression of different K+ channels affects [K+]ohomeostasis in the CNS have been long-standing questions for how astrocytes function. In the present study, we have addressed some of these questions in glial fibrillary acidic protein [GFAP(+)], freshly isolated astrocytes (FIAs) from CA1 and CA3 regions of P7–15 rat hippocampus. As isolated, these astrocytes were uncoupled allowing a higher resolution of electrophysiological study. FIAs showed two distinct ion current profiles, with neither showing a purely linear I-V relationship. One population of astrocytes had a combined expression of outward potassium currents ( I Ka, I Kd) and inward sodium currents ( I Na). We term these outwardly rectifying astrocytes (ORA). Another population of astrocytes is characterized by a relatively symmetric potassium current pattern, comprising outward I Kdr, I Ka, and abundant inward potassium currents ( I Kin), and a larger membrane capacitance ( C m ) and more negative resting membrane potential (RMP) than ORAs. We term these variably rectifying astrocytes (VRA). The I Kin in 70% of the VRAs was essentially insensitive to Cs+, while I Kin in the remaining 30% of VRAs was sensitive. The I Ka of VRAs was most sensitive to 4-aminopyridine (4-AP), while I Kdr of ORAs was more sensitive to tetraethylammonium (TEA). ORAs and VRAs occurred approximately equally in FIAs isolated from the CA1 region (52% ORAs versus 48% VRAs), but ORAs were enriched in FIAs isolated from the CA3 region (71% ORAs versus 29% VRAs), suggesting an anatomical segregation of these two types of astrocytes within the hippocampus. VRAs, but not ORAs, showed robust inward currents in response to an increase in extracellular K+ from 5 to 10 mM. As VRAs showed a similar current pattern and other passive membrane properties (e.g., RMP, R in) to “passive astrocytes”in situ (i.e., these showing linear I-V curves), such passive astrocytes possibly represent VRAs influenced by extensive gap-junction coupling in situ. Thus, our data suggest that, at least in CA1 and CA3 regions from P7–15 rats, there are two classes of GFAP(+) astrocytes which possess different K+ currents. Only VRAs seem suited to uptake of extracellular K+ via I Kin channels at physiological membrane potentials and increases of [K+]o. ORAs show abundant outward potassium currents with more depolarized RMP. Thus VRAs and ORAs may cooperate in vivo for uptake and release of K+, respectively.


2013 ◽  
Vol 124 (5) ◽  
pp. 999-1004 ◽  
Author(s):  
Roberto Eleopra ◽  
Cesare Montecucco ◽  
Grazia Devigili ◽  
Christian Lettieri ◽  
Sara Rinaldo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document