A simple approach for maximum heat recovery calculations

1992 ◽  
Vol 47 (6) ◽  
pp. 1481-1494 ◽  
Author(s):  
Jacek Jez̆owski ◽  
Ferenc Friedler
2012 ◽  
Author(s):  
Sharifah Rafidah Wan Alwi ◽  
Muhammad Azan Tamar Jaya ◽  
Zainuddin Abdul Manan

Kilang penapisan minyak sawit lazimnya melibatkan proses penggunaan tenaga yang tinggi. Peningkatan kecekapan tenaga adalah amat penting bagi memastikan keuntungan tercapai. Kertas kerja ini menggunakan teknik analisis jepit bagi memaksimumkan penggunaan semula haba dan meningkatkan kecekapan sistem rangkaian haba sedia ada di kilang penghasilan minyak sawit, tertakluk kepada kekangan–kekangan proses. Langkah–langkah yang terlibat ialah penetapan sasaran guna semula haba maksimum diikuti dengan reka bentuk rangkaian haba yang ekonomik. Aplikasi teknik berkenaan kepada kilang penghasilan minyak sawit telah menghasilkan pengurangan penggunaan haba panas dan sejuk sebanyak 700 kW (21%), atau penjimatan kos utiliti sebanyak RM370,787, dengan pelaburan kapital sebanyak RM656,293 dan jangka pulangan balik selama 1.77 tahun. Kata kunci: Analisis jepit; minyak kelapa sawit; sedia ada; rangkaian pemindahan haba; kitar semula haba maksimum A palm oil refinery involves energy–intensive processes. Maximizing thermal efficiency of palm oil refinery is crucial for the plant profitability. This work implements a pinch analysis retrofit technique to maximize heat recovery and thermal efficiency of a palm oil refinery, subject to the existing process constraints. The procedures involve setting the maximum heat recovery targets and cost–effective retrofit of the heat exchanger network (HEN). Application of the technique on a palm oil refinery results in reduction of 700 kW (21%) heating and cooling loads or a saving of RM370,787, incurring a capital investment of about RM656,293 and a payback period of 1.77 years. Key words: Pinch analysis; palm oil; retrofit; heat exchanger network; maximum heat recovery


2014 ◽  
Vol 87 ◽  
pp. 1098-1106 ◽  
Author(s):  
Sharifah Rafidah Wan Alwi ◽  
Carmen Kar Mun Lee ◽  
Kim Yau Lee ◽  
Zainuddin Abd Manan ◽  
Duncan M. Fraser

2011 ◽  
Vol 1 (2) ◽  
Author(s):  
I Made Rasta

Refrigerant in refrigeration machines will absorb heat from a room space and released the heat to the environment. The heat balancing in the system is heat released from condenser equal with heat absorbed from room space added by the heat equivalent from compressor work. Based on this heat cycle, the writer try to conduct research on using this heat rejection from condenser to heating tap water, focusing on water flow rate increased from 0.5 liter/min to 2.5 liter/min. From experiment and analysis result obtained that the maximum heat water temperature which can be reached is 47.5°C in 0.5 liter/min, with the equipment specifications are 2 HP- split air conditioning and the tank volume is 75 liters. The additional result is heating water temperature is fallen when the water flow rate is increased.


1987 ◽  
Vol 10 (4) ◽  
pp. 209-216
Author(s):  
Akio Hashimoto ◽  
Shunji Iwamura ◽  
Sukehiro Gotoh

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 594 ◽  
Author(s):  
Ainur Munirah Hafizan ◽  
Jiří Jaromír Klemeš ◽  
Sharifah Rafidah Wan Alwi ◽  
Zainuddin Abdul Manan ◽  
Mohd Kamaruddin Abd Hamid

The design of heat exchanger networks (HEN) in the process industry has largely focused on minimisation of operating and capital costs using techniques such as pinch analysis or mathematical modelling. Aspects of operability and flexibility, including issues of disturbances affecting downstream processes during the operation of highly integrated HEN, still need development. This work presents a methodology to manage temperature disturbances in a HEN design to achieve maximum heat recovery, considering the impact of supply temperature fluctuations on utility consumption, heat exchanger sizing, bypass placement and economic performance. Key observations have been made and new heuristics are proposed to guide heat exchanger sizing to consider disturbances and bypass placement for cases above and below the HEN pinch point. Application of the methodology on two case studies shows that the impact of supply temperature fluctuations on downstream heat exchangers can be reduced through instant propagation of the disturbances to heaters or coolers. Where possible, the disturbances have been capitalised upon for additional heat recovery using the pinch analysis plus-minus principle as a guide. Results of the case study show that the HEN with maximum HE area yields economic savings of up to 15% per year relative to the HEN with a nominal HE area.


2003 ◽  
Author(s):  
Hyunjae Park ◽  
Anthony Bowman ◽  
Tod Stansfield ◽  
Brian Huibregtse

In this paper, an exhaust gas heat recuperation unit for use with a boiler is developed to improve the overall thermal efficiency of integral system. The heat recuperation unit includes a plate-type heat exchanger for exhaust gas heat recovery for exchanging heat between an exhaust gas and combustion air. A proto-type heat exchanger is designed and manufactured with a series of exhaust gas plates stacked alternatively with, and parallel to, a series of air plates. Each of the exhaust gas plates and air plates contain ridges to form a substantially sinusoidal path for directing the respective gas therealong. The combustion air flown in a countercurrent to the exhaust gas to facilitate maximum heat transfer. The heat exchanger is connected to exhaust gas inlet and outlet conduits and combustion air inlet and outlet conduits. Proper number of plates for the heat exchanger is selected to obtain laminar flow through plate flow channels, producing a low gas pressure drop in each channel. Using the proto-type heat exchanger, experimental work was primarily performed to measure temperature and pressure changes of exhaust gas and combustion air at various boiler firing conditions. These test results are compared with those obtained from numerical (CFD) and analytical works. The approximate analytical model developed in this work is used to investigate the effects of exchanger design parameters on the system performance, and eventually to develop the exchanger design curves for the optimal selection of exchanger design values.


Sign in / Sign up

Export Citation Format

Share Document