Advances mine drainage water treatment, engineering for zero discharge

Desalination ◽  
1989 ◽  
Vol 75 ◽  
pp. 259-287 ◽  
Author(s):  
Joachim Masarczyk ◽  
Carl-Henrik Hansson ◽  
RobertL. Solomon ◽  
Bengt Hallmans
Author(s):  
Teemu Karlsson ◽  
Lena Alakangas ◽  
Päivi Kauppila ◽  
Marja Liisa Räisänen

AbstractThe mobility of contaminants from mine waste can be assessed using different extraction methods. Aqua regia (AR) extraction is the most commonly used method in Finland. Another method is the analysis of leachate from net acid generation (NAG) tests, which is primarily designed for acid production potential assessment. We investigated the performance of single-addition NAG test leachate analysis and AR extraction in drainage quality prediction, using waste rock and drainage water samples from several Finnish waste rock sites. Our objective was to improve interpretation of the AR and single-addition NAG test leachate analysis results in drainage quality prediction. The AR extraction effectively reflected elements that occurred in elevated concentrations in drainage water, though it over-predicted Al, As, Cd, Co, Cu, and Ni in some circumneutral drainages, and Cr in general. The single-addition NAG test leachate analysis also performed well in assessing the mobility of contaminants including Al and Cr at acid mine drainage sites. As the contaminants tend to precipitate in neutral NAG test solution, the usability of the method in neutral mine drainage cases should be further investigated. Furthermore, the conclusions presented in this study are limited to waste rock samples collected from the surface of piles; future work will examine waste rock history, dump cores, drainage quality changes, etc. in more detail.


2006 ◽  
Vol 43 (11) ◽  
pp. 1167-1179 ◽  
Author(s):  
M Paradis ◽  
J Duchesne ◽  
A Lamontagne ◽  
D Isabel

Acid mine drainage (AMD) is an environmental problem produced when sulphides come in contact with an oxidant (± bacteria) and water, producing acid generation and metals leaching. One solution proposed is to use red mud bauxite (RMB), which is very alkaline, to neutralize oxidized acidic tailings. A column leaching test has been set up to evaluate major aspects of field constraints. First, a field investigation was conducted in which RMB was spread in aggregates before mixing with tailings. This setup has been reproduced in the laboratory and compared with a homogeneous mixture. The analyses of the water effluent do not show any important difference between the two mixtures. Second, some studies show that the addition of Cl brine to RMB helps to maintain the long-term neutralization potential. Brine addition increased the concentrations of Ca, Mg, Na, K, and Cu in drainage water. Columns were set up with 10% and 20% RMB to evaluate the effect of the quantity applied. Addition of greater than 20% RMB increases the leachate alkalinity and concentrations of Al, Cu, Pb, As, Fe, and SO42– in drainage waters. The addition of 10% RMB, however, significantly improves the quality of drainage water over a period of 125 days and results in concentrations and pH values within the ranges of those recommended by Directive 019 of the Ministère de l'environnement, Québec.Key words: acid mine drainage, red mud bauxite, tailings, environmental geochemistry, neutralization.


2019 ◽  
Vol 26 (34) ◽  
pp. 34983-34992
Author(s):  
Anne Herbst ◽  
Leila Patzelt ◽  
Stefanie Schoebe ◽  
Hendrik Schubert ◽  
Wolf von Tümpling

Sign in / Sign up

Export Citation Format

Share Document