The developmental regulation of single-cell motility in Dictyostelium discoideum

1986 ◽  
Vol 113 (1) ◽  
pp. 218-227 ◽  
Author(s):  
Barbara Varnum ◽  
Kevin B. Edwards ◽  
David R. Soll
2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Ivan Pushkarsky ◽  
Yunbo Liu ◽  
Westbrook Weaver ◽  
Ting-Wei Su ◽  
Onur Mudanyali ◽  
...  
Keyword(s):  

1991 ◽  
Vol 115 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
S Eliott ◽  
P H Vardy ◽  
K L Williams

While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.


1998 ◽  
Vol 18 (10) ◽  
pp. 5744-5749 ◽  
Author(s):  
Irene Verkerke-Van Wijk ◽  
Ji-Yun Kim ◽  
Raymond Brandt ◽  
Peter N. Devreotes ◽  
Pauline Schaap

ABSTRACT Serpentine receptors such as smoothened and frizzled play important roles in cell fate determination during animal development. InDictyostelium discoideum, four serpentine cyclic AMP (cAMP) receptors (cARs) regulate expression of multiple classes of developmental genes. To understand their function, it is essential to know whether each cAR is coupled to a specific gene regulatory pathway or whether specificity results from the different developmental regulation of individual cARs. To distinguish between these possibilities, we measured gene induction in car1 car3 double mutant cell lines that express equal levels of either cAR1, cAR2, or cAR3 under a constitutive promoter. We found that all cARs efficiently mediate both aggregative gene induction by cAMP pulses and induction of postaggregative and prespore genes by persistent cAMP stimulation. Two exceptions to this functional promiscuity were observed. (i) Only cAR1 can mediate adenosine inhibition of cAMP-induced prespore gene expression, a phenomenon that was found earlier in wild-type cells. cAR1’s mediation of adenosine inhibition suggests that cAR1 normally mediates prespore gene induction. (ii) Only cAR2 allows entry into the prestalk pathway. Prestalk gene expression is induced by differentiation-inducing factor (DIF) but only after cells have been prestimulated with cAMP. We found that DIF-induced prestalk gene expression is 10 times higher in constitutive cAR2 expressors than in constitutive cAR1 or cAR3 expressors (which still have endogenous cAR2), suggesting that cAR2 mediates induction of DIF competence. Since in wild-type slugs cAR2 is expressed only in anterior cells, this could explain the so far puzzling observations that prestalk cells differentiate at the anterior region but that DIF levels are actually higher at the posterior region. After the initial induction of DIF competence, cAMP becomes a repressor of prestalk gene expression. This function can again be mediated by cAR1, cAR2, and cAR3.


Microbiology ◽  
2021 ◽  
Author(s):  
Catherine J. Pears ◽  
Julian D. Gross

The social amoeba Dictyostelium discoideum is a versatile organism that is unusual in alternating between single-celled and multi-celled forms. It possesses highly-developed systems for cell motility and chemotaxis, phagocytosis, and developmental pattern formation. As a soil amoeba growing on microorganisms, it is exposed to many potential pathogens; it thus provides fruitful ways of investigating host-pathogen interactions and is emerging as an influential model for biomedical research.


2018 ◽  
Vol 217 (8) ◽  
pp. 2613-2614 ◽  
Author(s):  
Bong Hwan Sung ◽  
Alissa M. Weaver

Directional cell motility toward a chemical gradient, chemotaxis, is critical during inflammation, embryogenesis, and cancer metastasis. In this issue, Kriebel et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201710170) demonstrate that the key cAMP chemoattractant for Dictyostelium discoideum amoebas is synthesized within and released from extracellular vesicles to promote chemotaxis.


1983 ◽  
Vol 3 (11) ◽  
pp. 1943-1948
Author(s):  
L J Kelly ◽  
R Kelly ◽  
H L Ennis

Spore germination in the slime mold Dictyostelium discoideum was used as a model to study the developmental regulation of protein and mRNA synthesis. Changes in the synthesis of these macromolecules occur during the transition from dormant spore to amoebae. The study of the mechanisms which regulate the quantity and quality of protein synthesis can best be accomplished with cloned genes. cDNA clones which hybridized primarily with mRNAs from only spores or germinating spores and not with growing amoebae were collected. Three such clones, denoted pLK109, pLK229, and pRK270, were isolated and had inserts of approximately 500, 1,200, and 690 base pairs, respectively. Southern blot hybridization experiments suggested that each of the genes is present in multiple copies in the D. discoideum genome. RNA blot hybridizations were performed to determine the sizes of the respective mRNAs and their developmental regulation. The mRNA that hybridized to pLK109 DNA was present predominantly in spores and at 1 h after germination but was absent in growing amoebae. Its concentration dramatically dropped at 3 h. The mRNA present in spores is apparently larger (approximately 0.5 kilobase) than in the later stages of germination (0.4 kilobase), indicating processing of the RNA during germination. The mRNA that hybridized to pLK229 DNA was approximately 1.0 kilobase and was present in very low amounts during growth. Its concentration rose until 1 h after spore germination and decreased thereafter. pRK270-specific RNA was approximately 2.7 kilobases and was found predominantly at 1 h after germination. It was present in lower concentrations at 2 and 3 h after germination and was absent in spores and amoebae. In vitro translation of mRNA selected from 1-h polyadenylated RNA which was hybridized to pLK109 or pLK229 DNA gave proteins of molecular weights consistent with the sizes of the mRNAs as determined by the RNA blot analysis.


1996 ◽  
Vol 109 (13) ◽  
pp. 3079-3087 ◽  
Author(s):  
M.J. Grimson ◽  
C.H. Haigler ◽  
R.L. Blanton

Prestalk cells of Dictyostelium discoideum contribute cellulose to two distinct structures, the stalk tube and the stalk cell wall, during culmination. This paper demonstrates by freeze fracture electron microscopy that two distinct types of intramembrane particle aggregates, which can be characterized as cellulose microfibril terminal complexes, occur in the plasma membranes of cells synthesizing these different forms of cellulose. The same terminal complexes were observed in situ in developing culminants and in vitro in monolayer cells induced to synthesize the two types of cellulose. We propose that cessation of cell motility is associated with a change in packing and intramembrane mobility of the particle aggregates, which cause a change in the nature of the cellulose synthesized. The terminal complexes are compared to those described in other organisms and related to the previous hypothesis of two modes of cellulose synthesis in Dictyostelium.


Sign in / Sign up

Export Citation Format

Share Document