Desensitization of substance P-induced K+ release in rat parotid

1985 ◽  
Vol 117 (3) ◽  
pp. 323-328 ◽  
Author(s):  
Zeev Y. Friedman ◽  
Uri Wormser ◽  
Eli Rubini ◽  
Michael Chorev ◽  
Chaim Gilon ◽  
...  
Keyword(s):  
1973 ◽  
Vol 248 (1) ◽  
pp. 369-372
Author(s):  
Zvi Selinger ◽  
Shmuel Batzri ◽  
Sarah Eimerl ◽  
Michael Schramm

1987 ◽  
pp. 195-196
Author(s):  
C. Dreux ◽  
V. Imhoff ◽  
P. Mauduit ◽  
B. Rossignol

1985 ◽  
Vol 225 (1) ◽  
pp. 263-266 ◽  
Author(s):  
D L Aub ◽  
J W Putney

Activation of muscarinic receptors in rat parotid cells results in breakdown of polyphosphoinositides liberating inositol phosphates, including inositol trisphosphate. Formation of inositol trisphosphate appears independent of agonist-induced Ca2+ mobilization, since neither formation nor degradation of inositol trisphosphate are appreciably altered in low-calcium media, and elevation of cytosolic Ca2+ with a calcium ionophore does not cause an increase in cellular inositol trisphosphate. Further, activation of substance P receptors and alpha 1-adrenoreceptors, but not beta-adrenoreceptors, increases inositol trisphosphate formation. The dose-response curve for methacholine activation of inositol trisphosphate formation more closely approximates the curve for receptor occupancy than for Ca2+-activated K+ release. These results are all consistent with the suggestion that inositol trisphosphate could function as a second messenger linking receptor occupation to cellular Ca2+ mobilization.


1988 ◽  
Vol 256 (2) ◽  
pp. 677-680 ◽  
Author(s):  
H Sugiya ◽  
J W Putney

Substance P-induced inositol trisphosphate (InsP3) formation was inhibited by 1 microM-4 beta-phorbol 12,13-dibutyrate (PDBu) in rat parotid acinar cells. The inhibitory effect of PDBu was reversed by the protein kinase C inhibitors H-7 or K252a. Substance P also elicits a persistent desensitization of subsequent substance P-stimulated InsP3 formation. However, this desensitization was not inhibited by H-7. In addition, H-7 had no effect on the time course of substance P-induced InsP3 formation. These results suggest that, although activation of protein kinase C by phorbol esters can inhibit the substance P receptor-linked phospholipase C pathway, this mechanism apparently plays little, if any, role in regulating this system after activation by substance P.


1982 ◽  
Vol 204 (2) ◽  
pp. 587-592 ◽  
Author(s):  
S J Weiss ◽  
J S McKinney ◽  
J W Putney

The metabolism of phosphatidate in rat parotid acinar cells was investigated, particularly with regard to the actions of agonists known to act by mobilizing Ca2+. When cells were incubated in medium containing 10 microM-[32P]Pi, phosphatidate was rapidly labelled, approaching an apparent steady-state with a half-time of approx. 20 min. Methacholine provoked a more than doubling of phosphatidate radioactivity, which was reversed by the muscarinic antagonist atropine. These results suggest that phosphatidate labels to near steady-state rapidly and that in cells prelabelled for 60 min the increase in radioactivity induced by agonists probably reflects net synthesis rather than an increase in specific radioactivity. Phosphatidate synthesis in response to methacholine was rapid and occurred, within the resolution of a few seconds, with no measurable latency. Adrenaline and substance P also stimulated phosphatidate synthesis but both agonists were less efficacious than methacholine. A Ca2+ ionophore, ionomycin, did not provoke phosphatidate synthesis. By using a protocol that eliminates the receptor-regulated Ca2+ pool, it was demonstrated that methacholine-induced phosphatidate formation does not come about as a consequence of Ca2+ influx nor of Ca2+ release. These results indicate that the phosphatidate synthesis response has characteristics compatible with its previously suggested role as a primary mediator of membrane Ca2+-gating.


1983 ◽  
Vol 214 (3) ◽  
pp. 865-870 ◽  
Author(s):  
C P Downes ◽  
M D Dibner ◽  
M R Hanley

Substance P, muscarinic and alpha-adrenoceptor agonists stimulated the incorporation of [3H]inositol into phosphatidylinositol in rat parotid gland slices. Surgical denervation of the sympathetic input to the rat parotid gland by superior cervical ganglionectomy produced marked reductions in these responses. The stimulated incorporation of radiolabelled precursors into phosphatidylinositol is a measure of its resynthesis after receptor-mediated breakdown of inositol phospholipids. We therefore examined the enzymic site of the lesion induced by sympathetic denervation using parotid gland slices labelled with either [3H]inositol or [32P]phosphate and stimulated with substance P. Receptor-activated phospholipase C attack upon [3H]inositol phospholipids was assayed by measuring the formation of [3H]inositol 1-phosphate in the presence of 10 mM-Li+ to inhibit further breakdown. It was not affected by denervation. Substance P elicited a rapid breakdown of phosphatidylinositol 4,5-bisphosphate and this response was reduced in the denervated gland. The second step in stimulated phosphatidylinositol turnover, phosphorylation of diacylglycerol to phosphatidate was not affected by denervation. Sympathetic denervation appears to induce a specific enzymic lesion in the parotid gland that impairs receptor-stimulated resynthesis of phosphatidylinositol from phosphatidate. This change in membrane lipid metabolism may be related to a number of the effects of sympathetic denervation, such as agonist supersensitivity, reduced gland cell proliferation and induction of new surface receptors.


1983 ◽  
Vol 4 (1) ◽  
pp. 117-120 ◽  
Author(s):  
TAKESHI KATO ◽  
TAKASHI SUZUKI ◽  
JINSAKU SAKAKIBARA

2001 ◽  
Vol 280 (6) ◽  
pp. C1498-C1510 ◽  
Author(s):  
Cyril Benes ◽  
Stephen P. Soltoff

Protein kinase C (PKC) δ becomes tyrosine phosphorylated in rat parotid acinar cells exposed to muscarinic and substance P receptor agonists, which initiate fluid secretion in this salivary cell. Here we examine the signaling components of PKCδ tyrosine phosphorylation and effects of phosphorylation on PKCδ activity. Carbachol- and substance P-promoted increases in PKCδ tyrosine phosphorylation were blocked by inhibiting phospholipase C (PLC) but not by blocking intracellular Ca2+ concentration elevation, suggesting that diacylglycerol, rather than d- myo-inositol 1,4,5-trisphosphate production, positively modulated this phosphorylation. Stimuli-dependent increases in PKCδ activity in parotid and PC-12 cells were blocked in vivo by inhibitors of Src tyrosine kinases. Dephosphorylation of tyrosine residues by PTP1B, a protein tyrosine phosphatase, reduced the enhanced PKCδ activity. Lipid cofactors modified the tyrosine phosphorylation-dependent PKCδ activation. Two PKCδ regulatory sites (Thr-505 and Ser-662) were constitutively phosphorylated in unstimulated parotid cells, and these phosphorylations were not altered by stimuli that increased PKCδ tyrosine phosphorylation. These results demonstrate that PKCδ activity is positively modulated by tyrosine phosphorylation in parotid and PC-12 cells and suggest that PLC-dependent effects of secretagogues on salivary cells involve Src-related kinases.


Sign in / Sign up

Export Citation Format

Share Document