scholarly journals Construction and functional analysis of hybrid interleukin-6 variants Characterization of the role of the C-terminus for species specificity

FEBS Letters ◽  
1992 ◽  
Vol 306 (2-3) ◽  
pp. 262-264 ◽  
Author(s):  
Frank W.G. Leebeek ◽  
Dana M. Fowlkes
1991 ◽  
Vol 279 (3) ◽  
pp. 787-792 ◽  
Author(s):  
D M Poole ◽  
A J Durrant ◽  
G P Hazlewood ◽  
H J Gilbert

The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. cellulosa, which also constitutes a CBD, fused to the N-terminus of endoglucanase A (EGA) from Ruminococcus albus. The three hybrid enzymes bound to insoluble cellulose, and could be eluted such that cellulose-binding capacity and catalytic activity were retained. The catalytic properties of the fusion enzymes were similar to EGE' and EGA respectively. Residues 37-347 and 34-347 of XYLC were fused to the C-terminus of EGE' and the 10 amino acids encoded by the multiple cloning sequence of pMTL22p respectively. The two hybrid proteins did not bind cellulose, although residues 39-139 of XYLC were shown previously to constitute a functional CBD. The putative role of the P. fluorescens subsp. cellulosa CBD in cellulase action is discussed.


2015 ◽  
Vol 112 (50) ◽  
pp. E6844-E6851 ◽  
Author(s):  
Grace Caldara-Festin ◽  
David R. Jackson ◽  
Jesus F. Barajas ◽  
Timothy R. Valentic ◽  
Avinash B. Patel ◽  
...  

Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7–C12 and C9–C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7–C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: “nonreducing” ARO/CYCs, which act on nonreduced poly-β-ketones, and “reducing” ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and di-domain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.


2005 ◽  
Vol 12 (11) ◽  
pp. 1336-1339
Author(s):  
Niamh Harraghy ◽  
Timothy J. Mitchell

ABSTRACT A porcine genomic library was screened for clones containing the promoter of the major acute-phase protein in pigs, inter-α-trypsin heavy chain 4 (ITIH4). Following isolation of the promoter, a functional analysis was performed with Hep3B cells. The promoter was induced by interleukin-6 (IL-6) but not by IL-1β. However, IL-1β was shown to inhibit the IL-6-induced activation of the porcine ITIH4 promoter.


1995 ◽  
Author(s):  
Itzhak Ohad ◽  
Himadri Pakrasi

The aim of this research project was to obtain information on the role of the cytochrome b559 in the function of Photosystem-II (PSII) with special emphasis on the light induced photo inactivation of PSII and turnover of the photochemical reaction center II protein subunit RCII-D1. The major goals of this project were: 1) Isolation and sequencing of the Chlamydomonas chloroplast psbE and psbF genes encoding the cytochrome b559 a and b subunits respectively; 2) Generation of site directed mutants and testing the effect of such mutation on the function of PSII under various light conditions; 3) To obtain further information on the mechanism of the light induced degradation and replacement of the PSII core proteins. This information shall serve as a basis for the understanding of the role of the cytochrome b559 in the process of photoinhibition and recovery of photosynthetic activity as well as during low light induced turnover of the D1 protein. Unlike in other organisms in which the psbE and psbF genes encoding the a and b subunits of cytochrome b559, are part of an operon which also includes the psbL and psbJ genes, in Chlamydomonas these genes are transcribed from different regions of the chloroplast chromosome. The charge distribution of the derived amino-acid sequences of psbE and psbF gene products differs from that of the corresponding genes in other organisms as far as the rule of "positive charge in" is concerned relative to the process of the polypeptide insertion in the thylakoid membrane. However, the sum of the charges of both subunits corresponds to the above rule possibly indicating co-insertion of both subunits in the process of cytochrome b559 assembly. A plasmid designed for the introduction of site-specific mutations into the psbF gene of C. reinhardtii. was constructed. The vector consists of a DNA fragment from the chromosome of C. reinhardtii which spans the region of the psbF gene, upstream of which the spectinomycin-resistance-conferring aadA cassette was inserted. This vector was successfully used to transform wild type C. reinhardtii cells. The spectinomycin resistant strain thus obtained can grow autotrophically and does not show significant changes as compared to the wild-type strain in PSII activity. The following mutations have been introduced in the psbF gene: H23M; H23Y; W19L and W19. The replacement of H23 involved in the heme binding to M and Y was meant to permit heme binding but eventually alter some or all of the electron transport properties of the mutated cytochrome. Tryptophane W19, a strictly conserved residue, is proximal to the heme and may interact with the tetrapyrole ring. Therefore its replacement may effect the heme properties. A change to tyrosine may have a lesser affect on the potential or electron transfer rate while a replacement of W19 by leucine is meant to introduce a more prominent disturbance in these parameters. Two of the mutants, FW19L and FH23M have segregated already and are homoplasmic. The rest are still grown under selection conditions until complete segregation will be obtained. All mutants contain assembled and functional PSII exhibiting an increased sensitivity of PSII to the light. Work is still in progress for the detailed characterization of the mutants PSII properties. A tobacco mutant, S6, obtained by Maliga and coworkers harboring the F26S mutation in the b subunit was made available to us and was characterized. Measurements of PSII charge separation and recombination, polypeptide content and electron flow indicates that this mutation indeed results in light sensitivity. Presently further work is in progress in the detailed characterization of the properties of all the above mutants. Information was obtained demonstrating that photoinactivation of PSII in vivo initiates a series of progressive changes in the properties of RCII which result in an irreversible modification of the RCII-D1 protein leading to its degradation and replacement. The cleavage process of the modified RCII-D1 protein is regulated by the occupancy of the QB site of RCII by plastoquinone. Newly synthesized D1 protein is not accumulated in a stable form unless integrated in reassembled RCII. Thus the degradation of the irreversibly modified RCII-D1 protein is essential for the recovery process. The light induced degradation of the RCII-D1 protein is rapid in mutants lacking the pD1 processing protease such as in the LF-1 mutant of the unicellular alga Scenedesmus obliquus. In this case the Mn binding site of PSII is abolished, the water oxidation process is inhibited and harmful cation radicals are formed following light induced electron flow in PSII. In such mutants photo-inactivation of PSII is rapid, it is not protected by ligands binding at the QB site and the degradation of the inactivated RCII-D1 occurs rapidly also in the dark. Furthermore the degraded D1 protein can be replaced in the dark in absence of light driven redox controlled reactions. The replacement of the RCII-D1 protein involves the de novo synthesis of the precursor protein, pD1, and its processing at the C-terminus end by an unknown processing protease. In the frame of this work, a gene previously isolated and sequenced by Dr. Pakrasi's group has been identified as encoding the RCII-pD1 C-terminus processing protease in the cyanobacterium Synechocystis sp. PCC 6803. The deduced sequence of the ctpA protein shows significant similarity to the bovine, human and insect interphotoreceptor retinoid-binding proteins. Results obtained using C. reinhardtii cells exposes to low light or series of single turnover light flashes have been also obtained indicating that the process of RCII-D1 protein turnover under non-photoinactivating conditions (low light) may be related to charge recombination in RCII due to back electron flow from the semiquinone QB- to the oxidised S2,3 states of the Mn cluster involved in the water oxidation process.


2016 ◽  
Vol 36 (6) ◽  
pp. 1019-1031 ◽  
Author(s):  
Margarita Arango-Lievano ◽  
Ozge Sensoy ◽  
Amélie Borie ◽  
Maithé Corbani ◽  
Gilles Guillon ◽  
...  

Palmitoylation is involved in several neuropsychiatric and movement disorders for which a dysfunctional signaling of the dopamine D3 receptor (Drd3) is hypothesized. Computational modeling of Drd3's homologue, Drd2, has shed some light on the putative role of palmitoylation as a reversible switch for dopaminergic receptor signaling. Drd3 is presumed to be palmitoylated, based on sequence homology with Drd2, but the functional attributes afforded by Drd3 palmitoylation have not been studied. Since these receptors are major targets of antipsychotic and anti-Parkinsonian drugs, a better characterization of Drd3 signaling and posttranslational modifications, like palmitoylation, may improve the prospects for drug development. Using molecular dynamics simulations, we evaluatedin silicohow Drd3 palmitoylation could elicit significant remodeling of the C-terminal cytoplasmic domain to expose docking sites for signaling proteins. We tested this modelin celluloby using the interaction of Drd3 with the G-alpha interacting protein (GAIP) C terminus 1 (GIPC1) as a template. From a series of biochemical studies, live imaging, and analyses of mutant proteins, we propose that Drd3 palmitoylation acts as a molecular switch for Drd3-biased signaling via a GIPC1-dependent route, which is likely to affect the mode of action of antipsychotic drugs.


2011 ◽  
Vol 286 (17) ◽  
pp. 14804-14811 ◽  
Author(s):  
Christoph Garbers ◽  
Nathalie Jänner ◽  
Athena Chalaris ◽  
Marcia L. Moss ◽  
Doreen M. Floss ◽  
...  

2016 ◽  
Vol 10 (4) ◽  
pp. e10 ◽  
Author(s):  
Alessia Buglioni ◽  
S. Jeson Sangaralingham ◽  
Brenda K. Huntley ◽  
Gerald E. Harders ◽  
Daniel J. McCormick ◽  
...  

Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1915-1928
Author(s):  
Chloe Thomas ◽  
Philip W Ingham

AbstractCharacterization of different alleles of the Hedgehog receptor patched (ptc) indicates that they can be grouped into several classes. Most mutations result in complete loss of Ptc function. However, missense mutations located within the putative sterol-sensing domain (SSD) or C terminus of ptc encode antimorphic proteins that are unable to repress Smo activity and inhibit wild-type Ptc from doing so, but retain the ability to bind and sequester Hh. Analysis of the eye and head phenotypes of Drosophila melanogaster in various ptc/ptctuf1 heteroallelic combinations shows that these two classes of ptc allele can be easily distinguished by their eye phenotype, but not by their head phenotype. Adult eye size is inversely correlated with head vertex size, suggesting an alteration of cell fate within the eye-antennal disc. A balance between excess cell division and cell death in the mutant eye discs may also contribute to final eye size. In addition, contrary to results reported recently, the role of Hh signaling in the Drosophila head vertex appears to be primarily in patterning rather than in proliferation, with Ptc and Smo having opposing effects on formation of medial structures.


Sign in / Sign up

Export Citation Format

Share Document