The behavior of rare earth elements in seawater: Precise determination of variations in the North Pacific water column

1992 ◽  
Vol 56 (5) ◽  
pp. 1851-1862 ◽  
Author(s):  
Donald J Piepgras ◽  
Stein B Jacobsen
2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Chen ◽  
Jianjun Zou ◽  
Aimei Zhu ◽  
Xuefa Shi ◽  
Dirk Nürnberg ◽  
...  

Investigating the composition and distribution of pelagic marine sediments is fundamental in the field of marine sedimentology. The spatial distributions of surface sediment are unclear due to limited investigation along the Emperor Seamount Chain of the North Pacific. In this study, a suite of sedimentological and geochemical proxies were analyzed, including the sediment grain size, organic carbon, CaCO3, major and rare earth elements of 50 surface sediment samples from the Emperor Seamount Chain, spanning from ∼33°N to ∼52°N. On the basis of sedimentary components, we divide them into three Zones (I, II, and III) spatially with distinct features. Sediments in Zone I (∼33°N–44°N) and Zone III (49.8°N–53°N) are dominated by clayey silt, and mainly consist of sand and silty sand in Zone II. The mean grain size of the sortable silt shows that the hydrodynamic condition in the study area is significantly stronger than that of the abyssal plain, especially at the water depth of 1,000–2,500 m. The CaCO3 contents in sediments above 4,000 m range from 20 to 84% but decrease sharply to less than 1.5% below 4,000 m, confirming that the water depth of 4,000 m is the carbonate compensation depth of the study area. Strong positive correlations between Al2O3 and Fe2O3, TiO2, MgO, and K2O (R > 0.9) in the bulk sediments indicate pronounced contributions of terrigenous materials from surrounding continent mass to the study area. Furthermore, the eolian dust makes contributions to the composition of bulk sediments as confirmed by rare earth elements. There is no significant correlation between grain size and major and minor elements, which indicates that the sedimentary grain size does not exert important effects on terrigenous components. There is significant negative δCe and positive δEu anomalies at all stations. The negative Ce anomaly mainly exists in carbonate-rich sediments, inheriting the signal of seawater. The positive Eu anomaly indicates widespread volcanism contributions to the study area from active volcanic islands arcs around the North Pacific. The relative contributions of terrestrial, volcanic, and biogenic materials vary with latitude and water depth in the study area.


2013 ◽  
Vol 62 (12) ◽  
pp. 1057-1069 ◽  
Author(s):  
Kenshi KUMA ◽  
Hyoe TAKATA ◽  
Saori KITAYAMA ◽  
Aya OMATA

Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 173
Author(s):  
Alexander Matul ◽  
Galina Kh. Kazarina

The paper presents micropaleontological information and observations of the North Pacific diatom species Neodenticula (N.) seminae (Simonsen and Kanaya) Akiba and Yanagisawa in the surface and Holocene sediments from the North Atlantic, Nordic, and Arctic Seas. The compilation of previously published data and new findings of this study on N. seminae in the surface sediments shows its broad occurrence as a usual element of the modern diatom microflora in the Nordic, Labrador, and Irminger Seas. The recent migration of N. seminae from its native area, the Subarctic Pacific, reflects the oceanographic shift in the late 1990s as greater transport of the warmer surface Pacific water to the Arctic causes Arctic sea-ice reduction. Micropaleontological studies of the Holocene sediments document the multiple events of N. seminae appearance in the Arctic during the latest Pleistocene and Holocene warming intervals. These observations can suggest the events of the increased influence of the North Pacific water on the Arctic environments in the past, not just during the recent warm climate amplification.


Sign in / Sign up

Export Citation Format

Share Document