Constitutive heat-transfer equations for materials with memory

1978 ◽  
Vol 21 (2) ◽  
pp. 155-161 ◽  
Author(s):  
V.L. Kolpashchikov ◽  
A.I. Schnipp
Meccanica ◽  
1972 ◽  
Vol 7 (1) ◽  
pp. 21-21
Author(s):  
G. Capriz

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Alejandro Caicedo ◽  
Claudio Cuevas ◽  
Hernán R. Henríquez

We study the existence of S-asymptotically ω-periodic solutions for a class of abstract partial integro-differential equations and for a class of abstract partial integrodifferential equations with delay. Applications to integral equations arising in the study of heat conduction in materials with memory are shown.


1997 ◽  
pp. 1127-1136
Author(s):  
A. E. Green ◽  
R. S. Rivlin ◽  
A. J. M. Spencer

Author(s):  
A. Oudrane ◽  
Benaoumeur Aour ◽  
Zeghmati Belkacem ◽  
Massaud Hamouda

This work focuses on the numerical investigation of different modes of heat exchangebetween the habitat and its environment in an extremely hot climate to optimize thermal comfort.Notably, to optimize habitable comfort, it is essential to model the solar flux and the temperatureabsorbed by the habitat walls. In this context, we have developed an analytical model to predict heatexchange for a habitat in the Adrar region. The heat transfer equations have been established in eachwall of the habitat. These equations were discretized by the finite difference method and solvedusing the Gauss algorithm. The models developed were validated with climatic data measured in theresearch unit ''URER'MS'' in Adrar. The results obtained showed that building materials andextreme weather conditions were the decisive parameters of unwanted overheating.


1994 ◽  
Vol 116 (4) ◽  
pp. 521-527 ◽  
Author(s):  
J. W. Baish

A new model of steady-state heat transport in perfused tissue is presented. The key elements of the model are as follows: (1) a physiologically-based algorithm for simulating the geometry of a realistic vascular tree containing all thermally significant vessels in a tissue; (2) a means of solving the conjugate heat transfer problem of convection by the blood coupled to three-dimensional conduction in the extravascular tissue, and (3) a statistical interpretation of the calculated temperature field. This formulation is radically different from the widely used Pennes and Weinbaum-Jiji bio-heat transfer equations that predict a loosely defined local average tissue temperature from a local perfusion rate and a minimal representation of the vascular geometry. Instead, a probability density function for the tissue temperature is predicted, which carries information on the most probable temperature at a point and uncertainty in that temperature due to the proximity of thermally significant blood vessels. A sample implementation illustrates the dependence of the temperature distribution on the flow rate of the blood and the vascular geometry. The results show that the Pennes formulation of the bio-heat transfer equation accurately predicts the mean tissue temperature except when the arteries and veins are in closely spaced pairs. The model is useful for fundamental studies of tissue heat transport, and should extend readily to other forms of tissue transport including oxygen, nutrient, and drug transport.


Sign in / Sign up

Export Citation Format

Share Document