Aerosol formation during air ingress into the core of a pebble high temperature reactor

1988 ◽  
Vol 19 (7) ◽  
pp. 1343-1346 ◽  
Author(s):  
K. Kugeler ◽  
Ch. Epping ◽  
J. Roes
Energy ◽  
1991 ◽  
Vol 16 (1-2) ◽  
pp. 491-499
Author(s):  
K. Kugeler ◽  
Ch. Epping ◽  
P. Schmidtlein ◽  
P. Schreiner

Author(s):  
Chang H. Oh ◽  
Eung S. Kim ◽  
Richard Schultz ◽  
David Petti ◽  
Hyung S. Kang

A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (∼160 sec) would be significantly earlier than the previous predictions (∼150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.


2021 ◽  
Author(s):  
Takeaki Ube ◽  
Tetsuaki Takeda

Abstract A depressurization accident involving the rupture of the primary cooling pipe of the Gas Turbine High Temperature Reactor 300 cogeneration (GTHTR300C), which is a very-high-temperature reactor, is a design-based accident. When the primary pipe connected horizontally to the side of the reactor pressure vessel of GTHTR300C ruptures, molecular diffusion and local natural convection facilitate gas mixing, in addition to air ingress by counter flow. Furthermore, it is expected that a natural circulation flow around the furnace will suddenly occur. To improve the safety of GTHTR300C, an experiment was conducted using an experimental apparatus simulating the flow path configuration of GTHTR300C to investigate the mixing process of a two-component gas of helium and air. The experimental apparatus consisted of a coaxial double cylinder and a coaxial horizontal double pipe. Ball valves were connected to a horizontal inner pipe and outer pipe, and the valves were opened to simulate damage to the main pipe. As a result, it was confirmed that a stable air and helium density stratification formed in the experimental apparatus, and then a natural circulation flow was generated around the inside of the reactor.


Author(s):  
Chang H. Oh ◽  
Eung S. Kim

Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy (DOE), is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena identification and ranking studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air-ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to a release of fission products into the confinement, which could be detrimental to reactor safety. Computational fluid dynamics models developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional (2-D) and three-dimensional (3-D) computational fluid dynamic (CFD) results for the quantitative assessment of the air ingress phenomena. A portion of the results from density-driven stratified flow in the inlet pipe will be compared with the experimental results.


Author(s):  
Kuniyoshi Takamatsu ◽  
Kazuhiro Sawa

The High-Temperature Engineering Test Reactor (HTTR) is the first High-Temperature Gas-cooled Reactor (HTGR) with a thermal power of 30 MW and a maximum reactor outlet coolant temperature of 950 °C; it was built at the Oarai Research and Development Center of JAEA. At present, test studies are being conducted using the HTTR to improve HTGR technologies in collaboration with domestic industries that also contribute to foreign projects for the acceleration of HTGR development worldwide. To improve HTGR technologies, advanced analysis techniques are currently under development using data obtained with the HTTR, which include reactor kinetics, thermal hydraulics, safety evaluation, and fuel performance evaluation data (including the behavior of fission products). In this study, a three gas circulator trip test and a vessel cooling system (VCS) stop test were performed as a loss of forced cooling (LOFC) test to demonstrate the inherent safety features of HTGR. The VCS stop test involved stopping the VCS located outside the reactor pressure vessel to remove the residual heat of the reactor core as soon as the three gas circulators are tripped. All three gas circulators were tripped at 9, 24 and 30 MW. The primary coolant flow rate was reduced from the rated 45 t/h to 0 t/h. Control rods (CRs) were not inserted into the core and the reactor power control system was not operational. In fact, the three gas circulator tripping test at 9 MW has already been performed in a previous study. However, the results cannot be disclosed to the public because of a confidentiality agreement. Therefore, we cannot refer to the difference between the analytical and test results. We determined that the reactor power immediately decreases to the decay heat level owing to the negative reactivity feedback effect of the core, although the reactor shutdown system was not operational. Moreover, the temperature distribution in the core changes slowly because of the high heat capacity due to the large amount of core graphite. Core dynamics analysis of the LOFC test for the HTTR was performed. The relationship among the reactivities (namely, Doppler, moderator temperature, and xenon reactivities) affecting recriticality time and reactor peak power level as well as total reactivity was addressed. Furthermore, the analytical results for a reactor transient of hundred hours are presented. Based on the results, emergency operating procedures can be developed for the case of a loss of coolant accident in HTGR when the CRs are not inserted into the core and the reactor power control system is not operational. The analytical results will be used in the design and construction of the Kazakhstan High-Temperature Reactor and the realization of commercial Very High-Temperature Reactor systems.


Author(s):  
Kaichao Sun ◽  
Lin-Wen Hu ◽  
Charles Forsberg

The fluoride-salt-cooled high-temperature reactor (FHR) is a new reactor concept, which combines low-pressure liquid salt coolant and high-temperature tristructural isotropic (TRISO) particle fuel. The refractory TRISO particle coating system and the dispersion in graphite matrix enhance safeguards (nuclear proliferation resistance) and security. Compared to the conventional high-temperature reactor (HTR) cooled by helium gas, the liquid salt system features significantly lower pressure, larger volumetric heat capacity, and higher thermal conductivity. The salt coolant enables coupling to a nuclear air-Brayton combined cycle (NACC) that provides base-load and peak-power capabilities. Added peak power is produced using jet fuel or locally produced hydrogen. The FHR is, therefore, considered as an ideal candidate for the transportable reactor concept to provide power to remote sites. In this context, a 20-MW (thermal power) compact core aiming at an 18-month once-through fuel cycle is currently under design at Massachusetts Institute of Technology (MIT). One of the key challenges of the core design is to minimize the reactivity swing induced by fuel depletion, since excessive reactivity will increase the complexity in control rod design and also result in criticality risk during the transportation process. In this study, burnable poison particles (BPPs) made of B4C with natural boron (i.e., 20% B10 content) are adopted as the key measure for fuel cycle optimization. It was found that the overall inventory and the individual size of BPPs are the two most important parameters that determine the evolution path of the multiplication factor over time. The packing fraction (PF) in the fuel compact and the height of active zone are of secondary importance. The neutronic effect of Li6 depletion was also quantified. The 18-month once-through fuel cycle is optimized, and the depletion reactivity swing is reduced to 1 beta. The reactivity control system, which consists of six control rods and 12 safety rods, has been implemented in the proposed FHR core configuration. It fully satisfies the design goal of limiting the maximum reactivity worth for single control rod ejection within 0.8 beta and ensuring shutdown margin with the most valuable safety rod fully withdrawn. The core power distribution including the control rod’s effect is also demonstrated in this paper.


Author(s):  
Chang H. Oh ◽  
Eung S. Kim

An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (6) preventing fluid density gradient; (7) preventing fluid temperature gradient; (7) preventing high temperature. Based on the basic concepts listed above, various air-ingress mitigation methods are proposed in this study. Among them, the following one mitigation idea was extensively investigated using computational fluid dynamic codes (CFD) in terms of helium injection in the lower plenum. The main idea of the helium injection method is to replace air in the core and the lower plenum upper part by buoyancy force. This method reduces graphite oxidation damage in the severe locations of the reactor inside. To validate this method, CFD simulations are addressed here. A simple 2-D CFD model was developed based on the GT-MHR 600MWt as a reference design. The simulation results showed that the helium replaces the air flow into the core and significantly reduces the air concentration in the core and bottom reflector potentially protecting oxidation damage. According to the simulation results, even small helium flow was sufficient to remove air in the core, mitigating the air-ingress successfully.


Sign in / Sign up

Export Citation Format

Share Document