Relationship of plasma triglyceride and HDL-cholesterol to post-heparin lipoprotein lipase activity as a consequence of apolipoprotein E polymorphism

1994 ◽  
Vol 109 (1-2) ◽  
pp. 65
Author(s):  
J. St-Amand ◽  
S. Moorjani ◽  
P.J. Lupien ◽  
D. Prud'homme ◽  
J.-P. Despre´s
1975 ◽  
Vol 229 (2) ◽  
pp. 394-397 ◽  
Author(s):  
J Borensztajn ◽  
MS Rone ◽  
SP Babirak ◽  
JA McGarr ◽  
LB Oscai

Lipoprotein lipase activity was measured in the three skeletal muscle fiber types of untrained rats and in those of rats subjected to a 12-wk program of treadmill running. Lipoprotein lipase activity in slow-twitch red fibers was approximately 14- to 20-fold higher (P less than 0.001) than that in fast-twitch white and approximately 2-fold higher (P less than 0.001) than that in fast-twitch red fibers in the untrained animals. These results suggest that, in sedentary animals, mainly slow-twitch red and fast-twitch red fibers are capable of taking up plasma triglyceride fatty acids. Regularly performed endurance exercise resulted in significant increase (2- to 4.5-fold) in lipoprotein lipase activity in the three muscle fiber types examined. The increase in lipoprotein lipase activity in response to treadmill running suggests that exercise increases the capacity of these fibers to take up and oxidize plasma triglyceride fatty acids. Cardiac muscle did not undergo an exercise-induced increase in the levels of activity of lipoprotein lipase similar to that seen in skeletal muscle.


2003 ◽  
Vol 89 (3) ◽  
pp. 341-350 ◽  
Author(s):  
Martina A. McAteer ◽  
David C. Grimsditch ◽  
Martin Vidgeon-Hart ◽  
G. Martin Benson ◽  
Andrew M. Salter

We have compared lipoprotein metabolism in, and susceptibility to atherosclerosis of, two strains of male Golden Syrian hamster, the Bio F1B hybrid and the dominant spot normal inbred (DSNI) strain. When fed a normal low-fat diet containing approximately 40 g fat and 0·3 g cholestero/g, triacylglycerol-rich lipoprotein (chylomicron+VLDL) and HDL-cholesterol were significantly higher (P<0·001) in Bio F1B hamsters than DSNI hamsters. When this diet was supplemented with 150 g coconut oil and either 0·5 or 5·0 g cholestero/g, significant differences were seen in response. In particular, the high-cholesterol diet produced significantly greater increases in plasma cholesterol and triacylglycerol in the Bio F1B compared with the DSNI animals (P=0·002 and P<0·001 for cholesterol and triacylglycerol, respectively). This was particularly dramatic in non-fasting animals, suggesting an accumulation of chylomicrons. In a second experiment, animals were fed 150 g coconut oi/g and 5·0 g cholestero/g for 6 and 12 months. Again, the Bio F1B animals showed dramatic increases in plasma cholesterol and triacylglycerol, and this was confirmed as primarily due to a rise in chylomicron concentration. Post-heparin lipoprotein lipase activity was significantly reduced (P<0·001) in the Bio F1B compared with the DSNI animals at 6 months, and virtually absent at 12 months. Bio F1B animals were also shown to develop significantly more (P<0·001) atherosclerosis. These results indicate that, in the Bio F1B hybrid hamster, cholesterol feeding reduces lipoprotein lipase activity, thereby causing the accumulation of chylomicrons that may be associated with their increased susceptibility to atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document