Effective radioiodination by lactoperoxidase and solubilisation of cell-surface proteins of cultured murine T lymphoma cells

1975 ◽  
Vol 7 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Dieter Haustein
1981 ◽  
Vol 91 (3) ◽  
pp. 889-894 ◽  
Author(s):  
L Y Bourguignon ◽  
M L Nagpal ◽  
Y C Hsing

Colchicine induces the clustering of at least three different T-lymphoma surface antigens (T200, Thy-1, and gp 69/71) into a cap structure in the absence of any external ligand. In addition, colchicine induces the intracellular accumulation of actin and myosin directly beneath the surface cap structure. We have discovered that myosin molecules (both heavy and light chains) are closely associated with the plasma membrane of T-lymphoma cells. Most importantly, we have found that the 20,000-dalton light chain of lymphocyte myosin is both phosphorylated and preferentially accumulated in the plasma membrane of colchicine-induced capped cells. It is proposed that myosin light chain is directly involved in the activation of membrane-associated actomyosin required for the collection of surface proteins into a cap structure (analogous to muscle cell sliding filament contraction).


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Sign in / Sign up

Export Citation Format

Share Document