Immunochemical analysis of parasporal crystal digests of Bacillus thuringiensis as an index of insecticidal activity

1971 ◽  
Vol 18 (3) ◽  
pp. 378-382 ◽  
Author(s):  
Victor W. Winkler ◽  
Gary D. Hansen ◽  
John Yoder
2006 ◽  
Vol 72 (1) ◽  
pp. 353-360 ◽  
Author(s):  
Guadalupe Peña ◽  
Juan Miranda-Rios ◽  
Gustavo de la Riva ◽  
Liliana Pardo-López ◽  
Mario Soberón ◽  
...  

ABSTRACT The use of Bacillus thuringiensis as a biopesticide is a viable alternative for insect control since the insecticidal Cry proteins produced by these bacteria are highly specific; harmless to humans, vertebrates, and plants; and completely biodegradable. In addition to Cry proteins, B. thuringiensis produces a number of extracellular compounds, including S-layer proteins (SLP), that contribute to virulence. The S layer is an ordered structure representing a proteinaceous paracrystalline array which completely covers the surfaces of many pathogenic bacteria. In this work, we report the identification of an S-layer protein by the screening of B. thuringiensis strains for activity against the coleopteran pest Epilachna varivestis (Mexican bean beetle; Coleoptera: Coccinellidae). We screened two B. thuringiensis strain collections containing unidentified Cry proteins and also strains isolated from dead insects. Some of the B. thuringiensis strains assayed against E. varivestis showed moderate toxicity. However, a B. thuringiensis strain (GP1) that was isolated from a dead insect showed a remarkably high insecticidal activity. The parasporal crystal produced by the GP1 strain was purified and shown to have insecticidal activity against E. varivestis but not against the lepidopteran Manduca sexta or Spodoptera frugiperda or against the dipteran Aedes aegypti. The gene encoding this protein was cloned and sequenced. It corresponded to an S-layer protein highly similar to previously described SLP in Bacillus anthracis (EA1) and Bacillus licheniformis (OlpA). The phylogenetic relationships among SLP from different bacteria showed that these proteins from Bacillus cereus, Bacillus sphaericus, B. anthracis, B. licheniformis, and B. thuringiensis are arranged in the same main group, suggesting similar origins. This is the first report that demonstrates that an S-layer protein is directly involved in toxicity to a coleopteran pest.


1984 ◽  
Vol 44 (2) ◽  
pp. 128-133 ◽  
Author(s):  
Andrew W. West ◽  
H.D. Burges ◽  
R.J. White ◽  
C.H. Wyborn

2006 ◽  
Vol 72 (5) ◽  
pp. 924-930 ◽  
Author(s):  
Guangjun Wang ◽  
Jie Zhang ◽  
Fuping Song ◽  
Jun Wu ◽  
Shuliang Feng ◽  
...  

2007 ◽  
Vol 10 (2) ◽  
pp. 137-143
Author(s):  
Joong Nam Kang ◽  
Jong Yul Roh ◽  
Sang Chul Shin ◽  
Sang-Hyun Koh ◽  
Yeong Jin Chung ◽  
...  

2009 ◽  
Vol 75 (14) ◽  
pp. 4661-4667 ◽  
Author(s):  
Alejandro Hernández-Soto ◽  
M. Cristina Del Rincón-Castro ◽  
Ana M. Espinoza ◽  
Jorge E. Ibarra

ABSTRACT Bacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium. A fifth toxin, Cry10Aa, is synthesized at very low levels; previous attempts to clone and express Cry10Aa were limited, and no parasporal body was formed. By using a new strategy, the whole Cry10A operon was cloned in the pSTAB vector, where both open reading frames ORF1 and ORF2 (and the gap between the two) were located, under the control of the cyt1A operon and the STAB-SD stabilizer sequence characteristic of this vector. Once the acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis was transformed with this construct, parasporal bodies were observed by phase-contrast microscopy and transmission electron microscopy. Discrete, ca. 0.9-μm amorphous parasporal bodies were observed in the mature sporangia, which were readily purified by gradient centrifugation once autolysis had occurred. Pure parasporal bodies showed two major bands of ca. 68 and 56 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. These bands were further characterized by N-terminal sequencing of tryptic fragments using matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, which identified both bands as the products of ORF1 and ORF2, respectively. Bioassays against fourth-instar larvae of Aedes aegypti of spore-crystal complex and pure crystals of Cry10Aa gave estimated 50% lethal concentrations of 2,061 ng/ml and 239 ng/ml, respectively. Additionally, synergism was clearly detected between Cry10A and Cyt1A, as the synergistic levels (potentiation rates) were estimated at 13.3 for the mixture of Cyt1A crystals and Cry10Aa spore-crystal complex and 12.6 for the combination of Cyt1A and Cry10Aa pure crystals.


Sign in / Sign up

Export Citation Format

Share Document