Mean stress effect in fatigue crack propagation

1980 ◽  
Vol 68 (2) ◽  
pp. 295-303 ◽  
Author(s):  
K. Tabeshfar ◽  
T.R.G. Williams
2018 ◽  
Vol 53 (8) ◽  
pp. 663-675 ◽  
Author(s):  
Grzegorz Lesiuk ◽  
Mieczysław Szata ◽  
Dariusz Rozumek ◽  
Zbigniew Marciniak ◽  
José Correia ◽  
...  

In this research, a novel approach of the fatigue crack growth rate description has been proposed. Based on theoretical and experimental approach, the mean stress effect expressed by R-ratio is present in classical da/dN–Δ K diagram. According to energy approach – based on the irrevocably dissipated energy accumulated in material (hysteresis loop) during fatigue process – the mean stress effect can be minimalized. Experimental validation of the proposed model was performed using results of fatigue crack propagation data for S355 and 41Cr4 steels in terms of strain energy density parameter Δ S or cyclic J-integral range –Δ J. In contrast to the force approach based on Kmax (or Δ K), the energy parameters Δ S or Δ J represent unambiguously the fatigue crack propagation rate, without influence of mean stress effect – R-ratio. However, in near threshold range of kinetic fatigue fracture diagram, the energy parameter displays a slight dispersion of the experimental data. According to the crack closure theory and its U-Elber parameter, the dispersion of experimental data is decreased. Therefore, the crack closure effects have a high significance in energy model – similar to the ‘force approach’ based on Δ K concept.


Sign in / Sign up

Export Citation Format

Share Document