Detonation spraying of protective coatings

1987 ◽  
Vol 93 ◽  
pp. 1-37 ◽  
Author(s):  
Y.A. Kharlamov
2019 ◽  
Author(s):  
Tomasz Chrostek ◽  
Mirosław Bramowicz ◽  
Kazimierz Rychlik ◽  
Wojtkowiak Adam ◽  
Cezary Senderowski

The paper presents the results of an investigation and analysis of the geometrical structure of Fe-Al intermetallic protective coatings sprayed under specified gun detonation spraying (GDS) conditions. As GDS variable parameters there were applied two different barrel lengths and two powder injection position (PIP) at the moment of spark detonation as well as two different number of GDS shots with 6.66 Hz frequency. The measurements of the surface's profile were carried out through means of contact profilometry, in which case TOPO-01 system and Mitutoyo SJ 210 profilometer were applied. On the basis of the measurements conducted the analysis of in two-dimensional (2D) and spatial (3D) systems was made possible. The authors assumed that roughness can be considered as a non-stationary parameter of variance of surface amplitude, which is highly dependent on the sampling rate and length of an elementary segments. Therefore, the changes in the amplitude parameters and functional properties of the surface at different lengths of measuring segments (ln), respectively: 1.25, 4 and 12.5 mm, were analyzed. In the analysis of the degree of development of the geometric structure of the surface, the RMS (Root Mean Square) fractal method was used, with an assessment of the geometric structure of the surface stretched over several size levels, taking into account the correlation between the roughness parameter Rq, the measuring length (ln) and the fractal dimension (D). The application of the RMS method with the determination of the fractal dimension (D) allowed for the characterization of the geometric structure of intermetallic Fe-Al protective coatings detonation sprayed under specific conditions of the GDS process - based on the surface roughness profiles of different measured length (ln). Research undertaken within the framework of project No. 2015/19 / B / ST8 / 02000 subsidized by the National Science Center of Poland.


Author(s):  
Alexander D. Pogrebnyak ◽  
Marharyta A. Lisovenko ◽  
Amanzhol Turlybekuly ◽  
Vladimir V. Buranich

2018 ◽  
Vol 40 (2) ◽  
pp. 106-112
Author(s):  
S.N. Kuzmenko ◽  
◽  
N.Ya. Kuzmenko ◽  
N.N. Laskovenko ◽  
V.A. Gumenyuk ◽  
...  
Keyword(s):  

2005 ◽  
Vol 2 (2) ◽  
pp. 17
Author(s):  
Norhayati Hamzah ◽  
Deepak Kumar Ghodgaonkar ◽  
Kamal Faizin Che Kasim ◽  
Zaiki Awang

Microwave nondestructive testing (MNDT) techniques are applied to evaluate quality of anti-corrosive protective coatings and paints on metal surfaces. A tree-space microwave measurement (FSMM) system is used for MNDT of protective coatings. The FSMM system consists of transmit and receive spot-focusing horn lens antennas, a vector network analyzer, mode transitions and a computer. Diffraction effects at the edges of the sample are minimized by using spot-focusing horn lens antennas. Errors due to multiple reflections between antennas are corrected by using free-space LRL (line, reflect, line) calibration technique. We have measured complex reflection coefficient of polyurethane based paint which is coated on brass plates.


Sign in / Sign up

Export Citation Format

Share Document