High-order schemes of the finite elements method for second-order elliptic equations in three-dimensional domains. II

1979 ◽  
Vol 19 (5) ◽  
pp. 54-61
Author(s):  
V.G. Korneev
2012 ◽  
Vol 12 (1) ◽  
pp. 1-41 ◽  
Author(s):  
Thibault Pringuey ◽  
R. Stewart Cant

AbstractIn this article, we detail the methodology developed to construct arbitrarily high order schemes — linear and WENO — on 3D mixed-element unstructured meshes made up of general convex polyhedral elements. The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems. The construction of WENO schemes on 3D unstructured meshes is notoriously difficult, as it involves a much higher level of complexity than 2D approaches. This due to the multiplicity of geometrical considerations introduced by the extra dimension, especially on mixed-element meshes. Therefore, we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces. The contribution of this work concerns several areas of interest: the formulation of an improved methodology in 3D, the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations, the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set.


Sign in / Sign up

Export Citation Format

Share Document