95/04328 Optical energy gap and below gap optical absorption of fullerene films measured by the constant photocurrent method and photothermal deflection spectroscopy

1995 ◽  
Vol 36 (4) ◽  
pp. 303
2019 ◽  
Vol 16 (39) ◽  
pp. 33-41
Author(s):  
Atheer M. Mkhaiber

Thin films of the blended solution of (NiPc/C60) on glass substrates were prepared by spin-coated method for three different ratios (100/1, 100/10 and 100/100). The effects of annealing temperature and C60 concentration on the optical properties of the samples were studied using the UV-Vis absorption spectroscopy and FTIR spectra. The optical absorption spectrum consists of two main bands, Q and B band, with maxima at about (602-632) nm and (700-730) nm for Q1 and Q2 respectively, and (340-375) nm for B band. The optical energy gap were determined from optical absorption spectra, The variation of optical energy gap with annealing temperature was nonsystematic and this may be due to the improvement in crystal structure for thin films. While the energy gap decreased by increasing the concentration of C60 approaches from the energy gap of this compound.


2001 ◽  
Vol 8 (3-4) ◽  
pp. 251-259 ◽  
Author(s):  
M. Kepinska ◽  
M. Nowak ◽  
Z. Kovalyuk ◽  
R. Murri

1994 ◽  
Vol 144 (2) ◽  
pp. 311-316 ◽  
Author(s):  
R. Cadenas ◽  
M. Quintero ◽  
J. C. Woolley

2021 ◽  
Vol 16 (2) ◽  
pp. 281-287
Author(s):  
Alaa Y. Mahmoud

The effect of the volumetric ratio of the tris(8-hydroxyquinoline) aluminum (Alq3) on its blend with the N,N'-Di [(1-naphthyl)-N,N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (NPD) (Alq3:NPD) is investigated and optimized for the UV photodetectors fabrication. The optical and structural properties of Alq3:NPD blend with different volumetric ratios 1:1, 2:1, and 3:1 is studied in the context of the absorbance, transmittance, optical energy gap and XRD patterns. Results show that the absorbance is increased by 11% at A = 260 nm with the increase in the volumetric ratio. In contrast, the optical energy bandgap that is extrapolated from the Tauc’s plot is decreased with the increase in the volumetric ratio, and the 2:1 ratio shows the lowest energy in the UV region. In terms of the XRD investigation, the 2:1 volumetric ratio shows the highest intensity for the crystallinity peak at 36.6°. The fabricated photodetector with a different volumetric ratio of the active layer Alq3:NPD blend shows the best performance with the ratio 2:1.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Ktifa ◽  
M. Ghrib ◽  
F. Saadallah ◽  
H. Ezzaouia ◽  
N. Yacoubi

We have studied the optical properties of nanocrystalline silicon (nc-Si) film deposited by plasma enhancement chemical vapor deposition (PECVD) on porous aluminum structure using, respectively, the Photothermal Deflection Spectroscopy (PDS) and Photoluminescence (PL). The aim of this work is to investigate the influence of anodisation current on the optical properties of the porous aluminum silicon layers (PASL). The morphology characterization studied by atomic force microscopy (AFM) technique has shown that the grain size of (nc-Si) increases with the anodisation current. However, a band gap shift of the energy gap was observed.


Sign in / Sign up

Export Citation Format

Share Document