Plane strain formulation for elastic-plastic behaviour. Technical note. 1F, 8R

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 145
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina ◽  
Yeong-Maw Hwang

The present paper concerns the general solution for finite plane strain pure bending of incompressible, orthotropic sheets. In contrast to available solutions, the new solution is valid for inhomogeneous distributions of plastic properties. The solution is semi-analytic. A numerical treatment is only necessary for solving transcendent equations and evaluating ordinary integrals. The solution’s starting point is a transformation between Eulerian and Lagrangian coordinates that is valid for a wide class of constitutive equations. The symmetric distribution relative to the center line of the sheet is separately treated where it is advantageous. It is shown that this type of symmetry simplifies the solution. Hill’s quadratic yield criterion is adopted. Both elastic/plastic and rigid/plastic solutions are derived. Elastic unloading is also considered, and it is shown that reverse plastic yielding occurs at a relatively large inside radius. An illustrative example uses real experimental data. The distribution of plastic properties is symmetric in this example. It is shown that the difference between the elastic/plastic and rigid/plastic solutions is negligible, except at the very beginning of the process. However, the rigid/plastic solution is much simpler and, therefore, can be recommended for practical use at large strains, including calculating the residual stresses.


Shock Waves ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 55-67 ◽  
Author(s):  
O. E. Petel ◽  
S. Ouellet ◽  
A. J. Higgins ◽  
D. L. Frost

1958 ◽  
Vol 25 (2) ◽  
pp. 239-242
Author(s):  
D. R. Bland ◽  
P. M. Naghdi

Abstract This paper is concerned with a compressible elastic-plastic wedge of an included angle β < π/2 in the state of plane strain. The solution, deduced for an isotropic nonwork-hardening material, employs Tresca’s yield criterion and the associated flow rules. By means of a numerical example the solution is compared with that of an incompressible elastic-plastic wedge in one case (β = π/4) for various positions of the elastic-plastic boundary.


1957 ◽  
Vol 24 (1) ◽  
pp. 98-104
Author(s):  
P. M. Naghdi

Abstract An elastic, perfectly plastic wedge of an incompressible isotropic material in the state of plane strain is considered, where the stress-strain relations of Prandtl-Reuss are employed in the plastic domain. For a wedge (with an included angle β) subjected to a uniform normal pressure on one boundary, the complete solution is obtained which is valid in the range 0 < β < π/2; this latter limitation is due to the character of the initial yield which depends on the magnitude of β. Numerical results for stresses and displacements are given in one case (β = π/4) for various positions of the elastic-plastic boundary.


Sign in / Sign up

Export Citation Format

Share Document