2013 ◽  
Vol 663 ◽  
pp. 87-91
Author(s):  
Ying Bo Pang

As an effective way of passive damping, isolation technology has been widely used in all types of building structures. Currently, for its theoretical analysis, it usually follows the rigid foundation assumption and ignores soil-structure interaction, which results in calculation results distortion in conducting seismic response analysis. In this paper, three-dimensional finite element method is used to establish finite element analysis model of large chassis single-tower base isolation structure which considers and do not consider soil-structure interaction. The calculation results show that: after considering soil-structure interaction, the dynamic characteristics of the isolation structure, and seismic response are subject to varying degrees of impact.


2015 ◽  
Vol 744-746 ◽  
pp. 911-914
Author(s):  
Zhao Bo Meng ◽  
Guan Dong Qiao ◽  
Jie Jin

This paper establishes three models using ANSYS, which were timber structure of Guangyue Tower, timber structure-tower base and timber structure-tower base-foundation. The first 3 natural frequencies of timber structure respectively were 0.8524Hz、1.1273 Hz and 1.7426 Hz through modal analysis, which were compared with calculations from code. Lanzhou Wave was chosen to analyze the seismic response of Guangyue Tower, and the amplitudes were adjusted to 55gal and 310gal respectively according to the frequent earthquake and rare earthquake, which were inputted to the above models. As can be seen from the calculations, the maximum displacements of the three models were in the top nodes, and tower base had a greater impact on vibration of timber structure, which could not be ignored in seismic response analysis; considering soil-structure interaction in seismic response analysis could better reflect the actual situation of Guangyue Tower.


Sign in / Sign up

Export Citation Format

Share Document